
WL-TR-94-8014

INTEGRATION TOOLKIT AND METHODS
(ITKM), AUTOMATED PROTOCOL ANALYSIS/REFERENCE
TOOL RESEARCH AND DEVELOPMENT PROJECT (APART)

FRANK J. WROBLEWSKI
J. DOUGLASS H. WHITEHEAD

CORPORATION FOR OPEN SYSTEMS INTERNATIONAL
8260 WILLOW OAKS CORPORATE DRIVE
SUITE 700
FAIRFAX VA 22031

MARCH 1994

FINAL REPORT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED.

MANUFACTURING TECHNOLOGY DIRECTORATE
WRIGHT LABORATORY
AIR FORCE MATERIEL COMMAND
WRIGHT PATTERSON AFB OH 45433-7739

19960516 045 BTIC QUALITY INSPECTED 1

NOTICE

When Government drawings, specifications, or other data are used for any purpose other
than in connection with a definitely related Government procurement operation, the United
States Government thereby incurs no responsibility nor any obligation whatsoever; and the
fact that the government may have formulated, furnished, or in any way supplied the said
drawings, specifications, or other data, is not to be regarded by implication or otherwise as
in any manner licensing the holder or any other person or corporation, or conveying any
rights or permission to manufacture, use, or sell any patented invention that may in any
way be related thereto.

This report has been reviewed by the Office of Public Affairs (ASC/PA) and is releasable
to the National Technical Information Service (NTIS). At NTIS, it will be available to the
general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

ß>AL6^ §fc/>- Pfidte^R McV
BRIAN STUCKE PATRICK PRICE
Project Engineer Supervisor

'"GERALD SHUMAKER, Chief
Manufacturing & Engineering Systems Division
Manufacturing Technology Directorate

"If your address has changed, if you wish to be removed from our mailing list, or if the
addressee is no longer employed by your organization please notify WL/MTII, Bldg. 653,
2977 P St., Suite 6,"w-PAFB, OH 45433-7739 to help us maintain a current mailing list."

Copies of this report should not be returned unless return is required by security
considerations, contractual obligations, or notice on a specific document.

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to
gathering and maintaining the data needed, and completing and reviewing

1. AGENCY USE ONLY (Leave blank) REPORMÄRTE1994
3. REPOR WNA£' ND DATES COVERED

4. TITLE AND SUBTITLE INTEGRATION TOOLKIT AND METHODS
(ITKM), AUTOMATED PROTOCOL ANALYSIS/REFERENOJE
TOOL RESEARCH AND DEVELOPMENT PROJECT (APART)

6. AUTHOR(S) FRANK J. WROBLEWSKI
J. DOUGLASS H. WHITEHEAD

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
CORPORATION FOR OPEN SYSTEMS INTERNATIONAL
8260 WILLOW OAKS CORPORATE DRIVE
SUITE 700
FAIRFAX VA 22031

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
MANUFACTURING TECHNOLOGY DIRECTORATE
WRIGHT LABORATORY
AIR FORCE MATERIEL COMMAND
WRIGHT PATTERSON AFB OH 45433-7739

5. FUNDING NUMBERS

C F33615-91-C-5713I
PE 78011
PR 3095
TA 06
WU 41

PERFORMING ORGANIZATION
REPORT NUMBER

10. SPONSORING /MONITORING
AGENCY REPORT NUMBER

WL-TR-94-8014

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS
UNLIMITED.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

A research prototyping project toiimprove the data communications portion of
enterprise integration.- The project focuses on prototype experiments in the
construction .of'a highly interactive graphics oriented tool to automate the
design, construction, and implementation of data communications protocol. The
projectlincludes the building of an example application that uses protocol
designed and generated with the APART tool. And finally„the project includes
usability testing of the APART tool.

14. SUBJEgrAXf||MSC0MMUNICATI0N PROTOCOLS, VISUAL PROGRAMMING
CASE TOOL, DISTRIBUTED APPLICATIONS, PROTOCOL
VALIDATION & SIMULATION, ENTERPRISE INTEGRATION

17. SECURITY CLASSIFICATION
0F CLASSIFIED

18. SECURITY CLASSIFICATION

^UNLMSSIFIED

19. SECURITY CLASSIFICATION
0FArJN

TatSsSIFIED

15. NUMBER OF PAGES
89

16. PRICE CODE

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

Table of Contents

List of Figures

1.0 Summary *

2.0 Introduction 3

2.1 Scope of This Document 3

2.2 Overview of This Document 3

2.3 Related Documents 3

2.4 Definition of Terms 4

3.0 Problem Description 5

3.1 Enterprise Integration and Benefit of Open Systems 5

4.0 APART Tool Description 6

4.1 Design Goals in Brief 7

4.2 Model of the Design Process Supported by APART 8

4.3 An Object-Oriented Tool • 9

4.4 High Level Design 10

4.4.1 Core Design and Simulation Modules 10
4.4.2 Protocol Validation Module 10

4.4.3 Graphical Interface Module n

4.4.4 Application Interface **
4.4.5 Lower Layer Stack 1J-
4.5 Implementation and Operational Environment H

5.0 Design Goals for APART 12
5.1 Technical Motivational Overview (Assumptions) 12

5.2 The APART Project (Methods) 13

6.0 Results • 14

6.1 Design Programming Model • • 15
6.1.1 Flow Diagram 17

6.1.2 FSM Diagram and State Transitions 18

6.1.3 Message Diagrams (ASN.l) 20

6.1.4 Side-effect Functions &Stub Files • 23

6.1.5 Work Flow Protocol Example 24

6.1.6 Reuse Example 30

6.2 Look and Feel 3i

62.1 Basic Building Blocks 31

6.2.2 Overall Meaning of the FSM Diagram 35
6.2.3 Flow Diagram 36

62A ASN.l diagram 36

6.2.5 Ease and Speed 40

62.6 Chained Mouse/Graphical Behavior 41

Hi

Table of Contents

6.2.7 Graphic Objects Represent Protocol 41
6.2.8 Persistent Objects Store Protocol 42
6.2.9 Overlapping Complex Graphical Objects 43
6.2.10 Custom in-but-not-on Behavior 44
6.2.11 Macro Expansion for Practical Validation 45
6.2.12 Isometric Projection 46
6.2.13 Dynamic Menus by Introspection 48
6.2.14 Hyper-text Buttons 49
6.2.15 Simulation/Execution 50

6.3 Protocol Validation 55
6.3.1 Proof Theoretic Approach to Validation 55
6.32 Validation Implemented in APART 55

6.4 Code Generation and Compilation 57

6.5 Rapid Prototyping 58
6.5.1 Rapid Prototyping Protocol with APART 59
6.5.2 A Prototyping Example: Bob Gets A Date .60

7.0 Groupware 64

7.1 Protocol Independence 64
7.1.1 Group Interaction Is Protocol 66
7.1.2 Protocol independence limits the effect of reorganization 66

7.2 APART Produces Groupware 67

7.3 Various Flavors of Groupware 67
7.3.1 Client/Server Applications 67
7.3.2 Workflow 68
7.3.3 Distributed Applications 69

8.0 The Collaborative Writing Demonstration 71

8.1 Walk-through (with protocol rules version 1) 71

8.2 Alternate Protocol Rules (version 2) 80

9.0 Usability Testing 82

9.1 Testing Results Summary 82

9.2 Testing observations 83

9.3 Possible Enhancements 85

Appendix ArProtocol Decomposition 86

IV

List of Figures

Figure 1. APART Block Diagram 6
Figure 2. Protocol Simulation Communication Architecture 8
Figure 3. APART Window Composite View 16
Figure 4. Flow Diagram 17
Figure 5. FSM Diagram 18
Figure 6. Message Diagram 21
Figure 7. Constructor Function 22
Figure 8. Stubs File 23
Figure 9. Client FSM and Constructor 24
Figure 10. Row Diagram For "Work Pool" 25
Figure 11. Worker FSM 26
Figure 12. Requestor FSM 26
Figure 13. Pool FSM 27
Figure 14. Constructor for "Request" 28
Figure 15. Constructor for Register 28
Figure 16. Work Pool Message Format 29
Figure 17. Timer Protocol Reuse 30
Figure 18. Elliptical transitions & Dummy States 32
Figure 19. Interface to "C" code 33
Figure 20. Icon Palette 35
Figure 21. Message Structure Types 37
Figure 22. Proportional Spacing Example 38
Figure 23. Shrinking of Complex items 38
Figure 24. Manipulation of Structured Objects 39
Figure 25. Pop Down Roaring Menus 40
Figure 26. Overlapping Objects 44
Figure 27. Macro Example 46
Figure 28. Expanded Macro 46
Figure 29. Variables in FSM Diagram 47
Figure 30. Isometric Projection 48
Figure 31. Dynamic Menus 49
Figure 32. Stack with Simulator 50
Figure 33. Simulator Look & Feel at Start-up 51
Figure 34. Simulator Window after GO button pressed 52
Figure 35. Simulator Status after FSM State Transition 53
Figure 36. Protocol Validation Graphic Feedback 56
Figure 37. Code Generation Process 57
Figure 38. Data Flow Diagram 60
Figure 39. Bob Finite State Machine 61
Figure 40. Susan Finite State Machine 62
Figure 4L ASN.l Message Format Diagram 62

List of Figures

Figure 42. Groupware Example: Collaborative Writing 65
Figure 43. Distributed Application Decomposition 66
Figure 44. Inbox Outbox Example 68
Figure 45. Adjusters Example 69
Figure 45. Distributed Application Decomposition 71
Figure 47. Client/Server Task Organization 72
Figure 48. Look&Feel for Collaborative Writing 73
Figure 49. Collaborative Writing Data Flow 74
Figure 50. Collaborative Writing Client FSM 75
Figure 51. Collaborative Writing Server FSM 76
Figure 52. Hyper-text Button FSM 77
Figure 53. Constructor: Put Document in Message78
Figure 54. Interface Function "opendoc" (Side-effect) 78
Figure 55. Hypertext Button Definition 79

vi

1.0 Summary
This document reports on the results of the Automated Protocol Analysis/Reference Tool
(APART) which is being built by the Corporation for Open Systems under contract with
the United States Air Force under the Integration Toolkit and Methods (ITKM) project,
Contract F33615-91-C-5711. This is a research prototyping project to improve the data
communications portion of enterprise integration. The project includes prototype experi-
ments in the construction of a highly interactive graphics oriented tool to automate the
design, construction, and implementation of data communications protocol. The project
includes the building of an example application that uses protocol designed and generated
with the APART tool. Finally the project includes usability testing of the APART tool.

The Automated Protocol Analysis/Reference Tool (APART) is a protocol analysis CASE
tool for the design, analysis, simulation and validation, and code generation of protocol,
which can be used to develop communication systems using open system communication
protocols and access methods in a UNIX environment. APART provides an easier, faster,
more reliable method of developing protocol applications for use in enterprise integration.
APART handles protocols that specify concurrent communication between two or more
parties. Existing user applications and communicating entities which were implemented
external to the tool environment can be integrated with protocol generated with APART.

Protocols are sets of rules that govern the interaction of concurrent processes in distributed
systems. Designing a logically consistent protocol that is useful and deadlock free is a
challenging and often frustrating task.
APART is a tool which allows a protocol designer to graphically define and manipulate a
protocol at a high level of abstraction. Much of the design process is automated.

APART provides the protocol developer with a sophisticated graphics interface to effi-
ciently and effectively employ flow diagrams to design who is to communicate, state tran-
sition diagrams to design when, and message format diagrams to express what is to be
transmitted. These diagrams convey complex relationships and behavior of the protocol
description to the designer.
There are three kinds of diagrams in which a protocol specification is built: Data Flow
Diagrams, Finite State Machine (FSM) Diagrams, which include event/action diagram
(notation), and ASN.l Diagrams. The Data Row Diagram describes the channels of com-
munication, (i.e. the flow of messages) between individuals (FSMs). Each FSM in a Data
Row Diagram can be expanded into a state transition diagram, called the Finite State
Machine Diagram. The FSM Diagram focuses on protocol states and how they are related
to each other. A FSM has a start state and is stimulated to change state by the arrival of
messages. Preconditions for transitions from one state to another as well as side-effects
resulting from their occurrence are specified in the FSM diagram. One can wait on the
arrival of a message, send a message to a peer, test or set a variable, invoke a "C" function,
or even specify "C" code in line. The structure of the message and how the message is to
be filled with data are further defined in the ASN.l diagram and ASN.l message construc-
tors respectively. Provision is made for additional "C" code and libraries.

From an early stage in the design process, APART can simulate the protocol and employ
validation techniques to uncover design flaws and incompatible protocol options in an
interactive environment. When problems such as deadlock are detected, the developer can
redesign the appropriate parts of the protocol and repeat simulation and validation until
the design is complete. Multiple design passes minimize unforeseen problems, and reduce
the time required to integrate data communication protocol and the user application.
When the protocol is complete and without known errors, APART generates the code for
the protocol. The collection of diagrams is translated into a set of executable tasks with a
single executable task produced for each finite state machine diagram.
The C-like source code generated for the distributed protocol utilizes open systems.
APART provides hooks into the generated "C" code where the designer can insert "C"-
function calls to perform application level tasks.
Many different disciplines, such as client/server systems, distributed applications, collabo-
rative systems and communication protocols can benefit from the APART tool. Group-
ware is one such example. Groupware is the implementation of group behavior protocol,
in that there are messages passed back and forth between computers which, in the context
of available resources, enforce the rules which define the course of the interaction between
the members of the group. Some examples of Groupware (collaborative distributed)
applications such as, video teleconferencing, computer teleconferencing, business meet-
ings, group authoring, RFP Development Process, RFP Evaluation Process, Research and
Development, Business Planning and Budgeting are but a few.

2.0 Introduction
This document reports on the research pertaining to the Automated Protocol Analysis/Ref-
erence Tool (APART) which is being built by the Corporation for Open Systems under
contract with the United States Air Force under the Integration Toolkit and Methods
(ITKM) project, Contract F33615-91-C-5711. The APART tool allows a communications
protocol designer to define and manipulate an Open Systems Interconnection protocol at a
high level of abstraction. From this design APART will create a reference implementation
of that protocol, and validate the protocol in an interactive environment with facilities to
change the protocol as design flaws are uncovered.

2.1 Scope of This Document
This document defines in detail the technical items investigated as part of the research
project. Its main purpose is to document the results of the research.

2.2 Overview of This Document
This section introduces the project, sets the scope of the document, identifies related docu-
ments, and lists terms which are used throughout the document.

Section 3 provides a brief description of the problem.
Section 4, describes the design goals of APART as they are laid out in this section. It pro-
vides a high-level description of the technologies involved, and describes the major com-
ponents of APART.
Section 5 discusses motivation of APART design and project methodology.

Sections 6 covers the results of the investigation. It starts with a walk-through of the
APART tool and how protocol is represented. It enumerates the features and functions
that were the subject of the prototyping experiments. It includes a discussion of results.

Section 7 deals with APART tool applications. It talks about groupware, protocol inde-
pendence as an application architecture and how APART can be used in this domain.

Section 8 reports on the major protocol application example, Collaborative Writing.

Section 9 reports on the usability testing.
The Appendix documents some initial protocol analysis that lead to the basic protocol
building blocks within the APART tool.

23 Related Documents
The APART project was proposed to the Air Force in response to their notice in a Depart-
ment of Commerce publication requesting submission of ideas for projects which would
further the goals of Enterprise Integration.
The Corporation for Open Systems submission, dated August 14,1990, is entitled, "The
Automated Protocol Analysis/Reference Tool (APART) Research and Development
Project Technical Proposal."
The contract covering the work on this project is described in "Integration Toolkit and
Methods Contract F33615-91-C-5711."

Deliverables include a tool user manual titled "The ENGAGE Protocol Development
Environment User's Guide.

2.4 Definition of Terms

In order to head off confusion in the rest of this document frequently used terms are
defined below.

Full Protocol Stack - A collection of protocol implementations which cover each Layer of
the ISO Reference Model for Open Systems Interconnection.

Protocol Stack - A collection of protocol implementations which cover a contiguous sub-
set of layers of the ISO Reference Model.

Protocol Implementation - A module(s) of computer code which carries out the function-
ality of a single protocol.

Protocol - Refers to a collection of events, actions, states, and message format that pertain
to a single layer, sub-layer or service element of the OSI Reference Model.

ISO Reference Model - Standardized hierarchy of protocol services.

Protocol State - A component of a means of describing protocol. A state is a form of
memory, in that one will remain in the state until some pre-specified condition(s) occur.
Any subsequent action can take into account the current state.

Finite state machine - A means to describe a protocol. A FSM is a set of states and transi-
tions between states. In some sense, a state is a form of memory, in that one will remain in
that state until some pre-specified condition, or conditions occur. Each condition is repre-
sented as a transition and they dictate both what action should be taken, and what new
state to visit.
A Path through a FSM - is a sequence of [state, transition,...,state,transition], where each
node and arc in the sequence is in the FSM.

AFSM - Augmented Finite State Machine is a means to describe a protocol in which the
notion of states, events, and actions are combined with the notion of predicates or vari-
ables.

Full State Search Space - It is a single pure FSM constructed by flattening AFSMs for the
communicating parties into pure FSMs, and combining them. A "full state" is a state in
the full state search space.

Pure FSM - A FSM composed solely of states and transitions. No constructs such as vari-
ables or queues are used. This form of FSM lends itself to search algorithms useful in
many forms of validation.

Deadlock - A failure of communication. It is exhibited when both ends of a channel are
waiting indefinitely for the other side to do something.

Livelock - A weakness of communication. A protocol has a livelock, if it allows endless
interaction between to FSMs, without progress.

Unreachable States - A state is said to be "unreachable," (from the start state) if there is no
path from the start state, to that state.

3.0 Problem Description
Enterprise integration is an umbrella term that covers all technologies that will assist in
merging all levels of computer based work into a single environment. Data communica-
tion enables enterprise integration. To further this end, a major industrial thrust to
improve computer protocol options and services is the development of open system net-
work communications standards. The open systems process has achieved some significant
milestones such as X.400, electronic mail. However, problems of integration and deploy-
ment remain, and are only heightened by the acceleration of technology. Tools must be
devised that handle the explosion of protocol details and provide meaningful and timely
information to the user.
3.1 Enterprise Integration and Benefit of Open Systems

In many corporations, different organizational elements within the enterprise seek out ^
their own system solutions for their requirements, thus creating "islands of automation
and "islands of data". Often their systems are built upon different vendors' proprietary
solutions Communication between these islands is difficult and expensive because of the
multi-vendor nature of their systems environment. This difficulty inhibits the flow of crit-
ical information throughout the enterprise.
One of the keys to enterprise integration involves adopting a common standard for com-
munication. Some of the advantages of using open systems network standards include:

• Allows products from multiple vendors to communicate, giving the purchaser
more flexibility in equipment selection and use.

• Enables multi-vendor interoperable networking environment.
• Increases access to information throughout the enterprise.
• Reduces life cycle cost of maintaining and upgrading systems.

The open systems communications model most widely accepted around the world is the
Open Systems Interconnection (OSI) Reference Model and TCP/IP for data communica-
tions networks. The goal of the seven layer model is the realization of interoperable sys-
tems based on internationally accepted data communications standards. The basic
objective of the OSI and TCP/IP models are to enable the interconnection of a muln-ven-
dor networking environment that supports a wide range of applications. Each layer of the
model defines a set of functions for supporting communications across a multi-vendor sys-
tem environment. The model provides a framework for the development of standardized
protocols and products for achieving enterprise integration.
To date, many standard protocol specifications have been developed based on this refer-
ence model. New protocols are being devised for more and more aspects of enterprise
activity to meet the ever growing demands for automation within the enterprise. As the
design and integration of such protocols accelerates it becomes imperative that automation
tools be applied in order to handle the explosion of protocol details available m a standard,
while maintaining quality of service. Our research focuses on tools to effeenvely handle
the quality and complexity of protocol information.

4.0 APART Tool Description
The previous section of this document discussed the need for an automated tool for design
of such protocols. The current section will provide a high-level description of the APART
tool's design. It attempts to paint with broad brush strokes a picture of the tool as a whole,
giving the reader an appreciation for the overall system architecture and the capabilities
and features of the tool without losing the reader in a sea of intricate details. It serves as
an introduction to the later sections of this document which provide more comprehensive
treatment of the major design components of the APART tool.

APART may be viewed as consisting of several major modules depicted in Figure 1:

1.

2.

3.

4.

5.

Graphical User
Interface

Validator

I
Application I/F

Protocol Design
Diagram Builder Simulator

^zxzz
Protocol FSM

Knowledge Base

Figure 1. APART Block Diagram

Lower

Layer

Stack

Diagram Builder - This module supports the underlying functionality of APART
for design. It constructs and organizes the underlying objects that will be used
throughout the APART tool.
Simulation module - This module supports the simulation of protocol activity.
The protocol validation module - This module automates the detection of design
flaws in the protocol being designed.
A graphical interface module - Provides graphical, direct manipulation interface to
the functionality provided by the other major modules.
Knowledge Base - This module stores and retrieves protocol components.

6. Application Interface - Supports the attachment of an external user application to
APART tool protocol reference implementations.

7. Lower Layer Stack - Supports the transmission of a message, protocol data units,
to an external entity outside the APART tool environment.

Below is a discussion of the design goals for the APART tool. Following this is a descrip-
tion of the model of the design problem supported by APART. Next will follow an over-
view of the major modules that comprise APART. This section concludes with a
description of the hardware and software environment that will be used in implementing
and using the APART tool.

4.1 Design Goals in Brief
The over-riding goal of this project is to build a protocol design tool which can deal with
the complexity of open systems protocols and thereby provide an easier, faster, more reli-
able method of developing protocols for use in enterprise integration. To achieve this
overall goal the design tool must provide several specific capabilities to the designer:

First, it must allow the designer to manipulate a communications protocol at various levels
of abstraction. This should improve user understanding of the protocol by providing
information at the most advantageous level of detail as dictated by the understanding and
needs of the user. As such, the user is more likely to choose the correct service options,
and thereby reduce the time to successful inter-communication.

Second, the tool will employ graphics in order to more efficiently and effectively convey
protocol description and behavior to the user. Graphics has a much larger bandwidth to
convey complex relationships to people. As such, the graphical display of information
reduces the time required for a user to absorb the information, which in turn will speed the
design process.
Another design goal is to automate as much of the design process as possible. This will
make it feasible to try alternative protocol designs before committing to a final set of pro-
tocol options.
APART will employ protocol validation techniques to uncover design flaws and incompat-
ible options earlier in the design process. Again, this will reduce the time required to inte-
grate data communication protocol.
Finally, APART will automate the process of going from design to implementation. The
final output of the APART tool is a reference implementation of the newly defined proto-
col. This should reduce the likelihood of introducing errors by reducing manual transla-

tion.

4.2 Model of the Design Process Supported by APART
This section will describe the conceptual model of the protocol design process which
APART will convey to the user. The communications process may be viewed as multiple
communicating entities, with each being supported by an open system protocol stack.
Each stack is composed of layers and sub-layers of cooperating protocols that combine to
allow communication with other stacks. Figure 2 shows a visual representation of multi-
ple communicating entities.

, active communication between two parties

Figure 2. Protocol Simulation Communication Architecture

The APART Tool design environment can support protocols at any layer. APART's proto-
type code generator directly supports design and implementation of protocols at the appli-
cation layer.
APART represents protocol as augmented finite state machines (FSM) - augmented in that
APART provides predicates and variables which store state information (This is in keep-
ing with the tradition of ISO protocol standards). The protocol designer defines the states
of the protocol's state machine and for each state the events of interest to that state, the
actions which are to be performed when one of the events occur, and the subsequent tran-
sition to another state.

8

Each machine has input and output queues which are used to communicate withi the| FSM
above and the FSM below. The APART user defines the connection between the oumut
quTe of one FSM and the input queue of the next. Messages are transmuted betwee^
FSMs by placing them in the appropriate output queue of a protocol *ac^ ISO stan-
dards define service primitives for communicating between adjacenUaye^ The^na-
tives pass parameter information as well as PDUs between layers. The ISO tandards
define the PDU formats using ASN.l grammar, but do not specify the format of the
parameters. In the APART environment, all communication between layers.u; viat mes-
Lges which include parameters and PDUs. The complete format of all messages will be

defined in ASN.l like notation.

APART provides two modes of operation:
1 Simulation Mode - allows the user to check a protocol by single-stepping through

" a message transmission sequence and examining internal variables at each step.
2 Reference Implementation Mode - The multiple executable tasks, reference imple-

" mentation, are completely independent from the APART environment.

43 An Object-Oriented Tool
APART is designed as an object-oriented tool for protocol design. The user manipulates
obiects in order to perform work. The object-oriented paradigm is appealing for this
apptication for several reasons. The APART tool models real-world entities - stacks.pro-
tocol machines, states, etc. It seems natural to define objects to represent them and an
interface which provides graphical manipulation of these objects as a means of defining,

examining, and changing them.
The object-oriented paradigm also facilitates separation of the internal functionality of
APART from the user interface aspects of the tool. The de-coupling of funcnon from dis-
play allows changes in one module without affecting the other. The user interface may
change substantially without changing the underlying functionality. Alternatively signifi-
cant changes can be made in the core design and simulation runcuonal objects without

affecting the user interface.
This de-coupling of underlying functionality from display also facilitates flexibility in the
level of detail which is displayed. If each underlying object has a default display image,
then the user can peruse the protocol design and the communications process at various
levels of detail -first viewing information about the protocol as a whole, then narrowing
the focus to a particular state, then further narrowing focus down to one event for that
state, and finally examining at different levels of detail some of the actions to be per-
formed when that event occurs.
An obiect model of the protocol design process also fits well with a direct manipulation
£5££L definition and manipulation of a protocol. During the protocol defimuon
process, the user selects an object which represents pan ?te *^ *^^
and sees a display which allows definition or editing of that object, thereby defining that
Tart^e protocol. The part may in turn be composed of other objects and selecnng one
of them may call up a display of that object's component parts.

4.4 High Level Design
4.4.1 Core Design and Simulation Modules
The Design and Simulation modules (see figure 1) provides the core functionality
required to design and edit a protocol, test it under various conditions, examine its compo-
nent parts at various levels of detail, and support connection to and communication with
communicating entities defined and implemented external to the APART environment.
These modules will be implemented as a set of objects corresponding to the components
of the communications process.
There is a global SIMULATOR object which maintains information which is global - e.g.
the mode of the simulation, the entities which are communicating, etc. The SIMULATOR
maintains a list of STACK objects, one for each communicating entity, and performs coor-
dination of execution between stacks so that there is an orderly communications process.

The STACK object in rum maintains a list of protocol machines which connect an output
queue of one FSM with the input queue of the next.
Each FSM of a stack is implemented as a PROTOCOL MACHINE object. A PROTO-
COL MACHINE maintains a list of execution states, the transitions between states, and a
set of input and output queues by which the machine communicates with the FSM above
and the FSM below.
Each TRANSITION object is composed of a set of events and the action scripts which are
executed when one of the events occurs.
A MESSAGE object defines the ASN.l format of a message and may contain the actual
data content of an incoming or outgoing message.
Side-effect objects define behavior for checking the contents and syntax of a message and
for manipulating pieces of a message in construction of a new message. Side-effect
objects defines particular kinds of action to be performed. Examples of actions are:

• variable testing and manipulation
• message checking
• message manipulation
• message transmission
• external function calling

As pan of the object-oriented nature of APART, it maintains libraries of re-usable compo-
nents of entire protocols or pieces of protocols which can be used and modified to create
new protocols. Among the useful components which may be stored are:

• protocol machines
• message formats (ASN. 1 definition of the syntax of a message)
• entire protocol stacks

4.4.2 Protocol Validation Module
The Protocol Validation module will test possible state combinations between communi-
cating peers. It will perform reachability analysis on the protocol machine to verify that

10

states may be reached and that no deadlocks will occur. This is a very costly APART tool
activity in terms of CPU time and memory space due to the combinatorial explosion of the
search space which occurs when all possible execution paths are considered. APART will
try to bound the problem by identifying combinations of states between the two peer
machines which are nonsensical. By doing this, the size of the problem and the time
required to perform the required search should be significandy reduced.

-;.4.3 Graphical Interface Module
APART is a software tool that a protocol designer will use on a workstation with a high
resolution monitor, keyboard and mouse. The software will display a graphical depiction
of the communications process being modelled. Components of a communications proto-
col are defined in APART via graphical manipulation of objects that represent the corre-
sponding components. The design prograrnming model in section 6.1 gives an
introduction to APART graphics by presenting three examples.

4.4.4 Application Interface
The APART tool provides a communication service to a user application. Plans calls for
such an interface to drive the programming interface of the FrameMaker product.

4.4.5 Lower Layer Stack
For this version of APART the lower layer stack is defined to start with the DSET appli-
cation programming interface (API). This is an application layer interface. The communi-
cations model is based on OSI Association Control Service Element (ACSE) and Remote
Operations Service Element (ROSE) international standards. The same Coirmunications
Infrastructure API is provided on top of a variety of protocol stacks, including TCP/IP, and

OSI.
4.5 Implementation and Operational Environment
APART is implemented on a SPARC 2 running Sun OS (Unix) and X-Windows. It is
implemented in Common Lisp.
The object model, i.e. the group of underlying objects which implement the APART tool
functional module, is implemented in Garnet .
The graphical interface for APART is implemented in Garnet, a graphical interface toolkit
(written in Common Lisp) from Carnegie Mellon University.
Lower layer support is provided by the Distributed Systems Generator (DSG) Tool Kit2.

Initial development was done on Sun 3/60 workstations. Equipment upgrade to SPARC 2s
was accomplished during the project.

1. Frame Technology Corporation
2. Distributed Software Engineering Tool (DSET) Corp.
3. School of Computer Science at Carnegie Mellon University

11

5.0 Design Goals for APART
The overall goal was to prototype a tool that can deal with the complexity of open systems
protocols and thus improve the speed and quality of enterprise integration. To achieve this
overall goal; APART, in concert with a user, should be able to:

1. Manipulate data communication protocol at various levels of abstraction- This
should improve user's understanding by providing information at the most appro-
priate level of detail, as indicated by the understanding and needs of the user. By
enhancing the user's understanding of a protocol, the user is more likely to choose
the correct options. This will speed integration.

2. Employ graphics in order to more efficiently and effectively convey protocol
description and behavior to the user- Graphics have a much larger bandwidth to
convey complex relationships to humans.

3. Automate protocol validation- This should reduce the integration time by identify-
ing protocol design flaws or incompatible options earlier.

4. Automate the production of an implementation design- This should reduce the
likelihood of introducing errors by reducing the manual translation.

Through the above automation goals, make it feasible and cost effective to try alternatives
before committing to a final set of protocol options. This should improve the likelihood of
selecting a set of protocol options with the desired behavior in a shorter amount of time.

5.1 Technical Motivational Overview (Assumptions)

The vision of the APART development staff has been to construct a workstation environ-
ment that will maximize the productivity of a protocol designer and integrator.

There are three categories of ideas that have contributed to the design of APART:
1. The Semantics of Protocol - There is a distinct advantage of having a protocol in

machine processible form that is amenable to viewing, checking, and cross check-
ing from various points of view. The process of encoding a protocol in a form
understandable by a machine requires an unambiguous discipline. This can result
in a protocol and its specification that is more exactly understood than the current
norm of protocol standards.

2. Some technologies that are relevant to the manipulation of protocol design:
Protocol Simulation - One might want to "try out" a protocol before work begins on an
efficient implementation.
Protocol Validation - An automated check to catch mistakes.
Iterative Design - By allowing multiple design passes, one can minimize unforeseen
problems.

3. Technologies indirectly relevant to protocol design, but facilitate productivity:
Rapid Prototyping - A design philosophy centered around the assumption that by mini-
mizing the labor in design construction, one encourages iterative design.

12

GUI - Graphic User Interfaces can be an effective Human Computer Interface (HCI) tech-
nique. By relaying information visually, often a human can track more details than text
based approaches.
User Sensitive Information Filtering - By allowing the protocol designer to specify what
is viewed, one can avoid confusing detail.
Software Reuse - Object oriented design will allow the construction of libraries. By stor-
ing/using protocol as modular chunks, one can reuse old pieces of protocol.

APART integrated these technologies into a single tool. In so doing, our hope has been to
overcome the productivity encumbrances experienced when integrating open systems pro-
tocols as part of enterprise integration.

52 The APART Project (Methods)
APART is a rapid prototyping project. The research method is to prototype the ideas spec-
ified in the design document. Opportunities for feedback are expected in this process
The first will occur when the researchers themselves use APART to encode the example
protocols Design modification and retry is a normal step in the prototyping method.
Once the researchers have evolved the prototype to a working level other users will be
introduced to APART. This will provide a second level of feedback that once again will be
used to enhance the design. This final report documents the discoveries learned dunng the

prototyping process.
A groupware application referred to as collaborative writing has been chosen as the major
example application. Collaborative writing is a distributed client server application
designed and generated by use of the APART Tool.

APART has several major characteristics:
1. Provides a design framework for constructing protocol implementations.
2. Performs simulation based on the protocol specification entered.

3. Manipulates protocol at multiple levels of abstraction.
4. Provides entry and display of protocol specification via a graphics interface.

5. Performs protocol validation checks.
6. Provides a second mode of operation in which the encoded protocol knowledge

behaves as an implementation.
7. Provides connectivity to an application entity.
8. Provides connectivity to a data communication service.

The last two items are provided for the example protocols that are implemented using
APART This is for example only, APART is intended as a general tool that can be used to
define any open system protocol at any level. Protocols thus defined can be stored m a
library and used as reference implementations, or as building blocks for other related pro-

tocols.

13

6.0 Results
In order to meet our objectives, there was a need to select or invent some sort of language
that would allow one to develop protocol. The model had to be rich enough to express real
world protocols and simple enough to be easily understood by protocol engineers. Rather
than invent our own programming model, the team chose to adopt one widely used in the
protocol and standards community. The choice was finite state machines, augmented with
variables and queues.

To establish a basis for this research, the programming model had to be rich enough to
express real world protocol. One has to be able to define messages passing between two
or more parties. One had to be able to define when a message is to be sent, and where it is
to go. When a message arrives, one must be able to define what to do with it. If these
characteristics exist, then the programming model is rich enough.

The augmented finite state machine model is rich and well understood. Considerable liter-
ature in protocol validation use this model. In fact, most protocol standards use an aug-
mented finite state machine as a basis for description. Indeed, many problems of standards
interpretation result from deviations from the AFSM model through textual descriptions.
So the team felt confident that augmented finite state machines were expressive enough to
design protocol. Another model that could have been used is the Petri Net design model.
This was a strong possibility, as it is commonly found in protocol research literature.

Ideally, the programming model should also be easily understood by protocol engineers.
The team felt that engineers are accustomed to thinking and expressing protocol in terms
of states, queues, and variables. So, rather than force an engineer to leam a new language,
the team chose to reinforce existing notions of protocol by displaying states graphically.
Finite state machine diagrams are commonplace in protocol literature, and they allow one
to "see" the relationships between states.

The team chose interfaces for the design of protocol from other disciplines as well. Data
flow diagrams were adopted from the software engineering field. They define the delivery
paths of messages, which emphasize "who is talking to whom", rather than mechanical
construction and use of an address. The ASN. 1 diagrams that display message content,
were adopted from the visual presentation of structure technique called "Tree-Maps".

By supporting the protocol programming model with a graphical look and feel, the team
has met programming model requirements, expressiveness and ease of use.

14

6.1 Design Programming Model
The design programming model will be presented by walking through three protocol
examples. A simple client/server protocol, "fsm-timer", will comprise the first example.
This protocol is made up of two communicating entities. The protocol includes one
advanced feature that enables it to support many instances of the client entity concurrently.
This feature demonstrates a many-to-one relationship. The second example, "pool", is
made up of three types of communicating entities. It includes many-to-one and one-to-
many relationships which on aggregate demonstrate how a many-to-many relationship can
be supported. The final example will combined the first two examples, demonstrating the
concept of protocol reuse.
Describing the APART environment centers around the interactive graphical diagrams.
The following window group, Figure 3, provides a composite view of all the diagrams
used to define a protocol. Each diagram will be defined as part of the walk-through.

15

i>
• **«

a
E o
U

o
T3
C

<

8

E

16

6.1.1 Flow Diagram
The first step in protocol design is to define the high level organization. The flow diagram
is used to accomplish this task. Figure 4 contains a flow diagram for the client/server pro-

tocol.

aBiaaif^QiBQajsiBJiauanifi

fsm-timer

^tq^out¥tc3_in

^timer
ft out 1 t- in t in2

Vapp

Figure 4. Flow Diagram
mMämmmäi ATanroM

The diagram is made up of rectangles which represent the communicating entities. They
are referred to as finite state machines (FSMs) because of their internal structure This
example contains two FSMs. The server FSM is tided "timer» and the client FSM is titled
"app" The server provides a timekeeping service. The client can send a message to the
server requesting that a message be sent back after a specified amount of time has elapsed.

Channels are defined to be objects that can send or receive messages. Channels are repre-
sented as triangles in FSMs. Output channels are connected to input channels using
arrows The arrows are referred to as connections. Channels and connections make up^
unidirectional paths over which messages can flow. In the above window the "app_out
channel is connected to the "t_in" channel, and the "t_out" channel is connected to the

"app_in" channel.
The two connections provide a bi-directional path for clients and servers to communicate
with each other. In some cases it is advantageous to be able to send a message to yourself.
In our example there are two additional channels, "t_in2" and "tq.out", which allows the
"timer" FSM to put messages in its own input queues.

17

The usage of these channels will be covered later under FSM diagrams. The FSMs of a
protocol can be packaged into a single entity referred to as a stack. A stack is represented
by the broken line rectangle and all the objects that are within it. A stack is an organiza-
tional unit that can be saved on disk. This covers all the parts of the "fsm-timer" data flow
diagram. Data flow diagrams contain the "who is communicating with who" information.

6.1.2 FSM Diagram and State Transitions
The next step in the design process is to define the interaction between FSMs. The inter-
action is made up of the exchange of messages under predefined conditions. The condi-
tions are sometimes referred to as the rules of the protocol. To see the interaction each
FSM can be expanded into an FSM diagram. APART uses an FSM diagram to represent
the protocol rules. Figure 5 contains the server FSM diagram, "timer".

.^»ujMMimtwww»^^
j FSM Digram Build» tor: Hm«r^<

paiiias)QjMgBja£jäiaül um«-i*!« :«i*»4

tq_in@t-req
/(decandcheck
tq_ln8t-req

"_in8t-req
/ tq_outet-

tq_inSemptyto)cen
/tq__out8eniptytolcen t_in26eniptytolcen

tq_out8enptytoken
t_ln2e«niptyto)cen
expired_pgf

ftäw&w6M8%feSicjii6fe^'fey^ffftf6a8fi^^

Figure 5. FSM Diagram

The FSM diagram is made up of states represented as icons and transitions represented as
arrows. The diagram is interpreted by starting at the fc* state and following the arrows.

The combination of states and arrows make up paths in the protocol. All the combinations
of paths define the protocol behavior, rules.
The "timer" FSM task will accept incoming messages. The messages will contain an inte-
ger value which represents the amount of elapsed time before a return message should be
sent. The "timer" will decrement the value as each second passes. When the count
reaches zero it will send the "expired" message to the client.

18

To be able to handle a variable number of requests a queue is used. A queue can be con-
structed out of two channels that are wired together. The data flow diagram shows that the
"timer" has two channels, tq_out and tq_in which are wired together. All channels can be
thought of as queues. The term 'hopper' is used as an abbreviation for the special case
where the in and out channels are of the same FSM.
Each transition can have one or more preconditions which must be true before the path to
the next state can be taken. Each transition can have one or more side-effects. If the path
is taken then the side-effect actions are performed. Side-effect actions constitute sending
messages, setting variable values and executing program functions.
To read the FSM diagram you will need to interpret the preconditions and side-effects
attached to each transition. Syntax for preconditions and side-effects are as follows:

1. preconditions / side-effects
2. preconditions ::= precondition <space> precondition I precondition
3. precondition ::= channel_name@message_name I variable_name@value

4. side-effects ::= side-effect <space> side-effect I side-effect
5. side-effect ::= channel_name@message_name I variable_name@value

I (fuhction_name param_l... param_n)
I (chan_name@msg_name (constructor_function p_l... p_n))
I (#[<excape to "C" source code]#)

The "timer" FSM starts out by putting an "emptytoken" message in the "tq_out" channel
and the "t_in2" channel. Channels can hold messages and therefore can be thought of as

message queues. The FSM then moves to the FE state.
This state has three different transitions that are possible. If it receives a "t_in@t-req"
message it will put the message in the hopper and return to the same state. If it receives a
t_in@fsmexit" message it will go to the "stop" state and terminate. If is receives a
"t_in@emptytoken" it will move to the @ state.

Sooner or later this transition is guaranteed since the FSM put an emptytoken message in
at the start state. The § state unconditionally executes a side-effect funciton which put
the task to sleep for one second, after which it moves to the 12 state. This state checks to
see if there are any messages in the hopper. If there is a message a side-effect function
"decandcheck" will decrement the time counter in the message and set a variable which
can be tests.
This brings the FSM to state S11, H. S11 tests the "expired_p" variable. If time has not
expired then the message is placed back in the hopper. If the time has expired then the
message is used to construct a output message that is send back to the original client The
original message is then discarded. Either condition will lead back to state S9, 13 . All the
messages in the hopper will be processed once.

19

At this point, the emptytoken will have bubbled up to the top of the hopper. Arrival of the
tq_in@emptytoken will take the FSM to state S3 and then back to state SI. All paths of
the FSM diagram have now been traversed. It can be observed that a variable number of
timer requests can be made and serviced with this diagram.
Its worth noting that the clients need not be aware of the internals of the server. As long as
the clients adhere to the message exchange defined, the protocol will behave properly.
This is in object oriented style. Different implementations of the timer can be substituted
without naving to modify the clients.
6.1.3 Message Diagrams (ASN.l)
Messages are typically made up of primitive components such as integers, character
strings, and octet strings. The primitive items can be grouped together into sets or
sequences. Figure 6 shows the messages for the "fsm-timer" protocol. This diagram
shows seven messages that were generated from information in the FSM diagram. Most
of this diagram was generated automatically by APART. Once the diagram was generated
the user added the "TIME" field to the "t_req" message.
The "CID" fields were added automatically in support of the many-to-one relationship.
This is part of APARTs default behavior in support of addressing. Note that this field is
optional and can be overridden. The user selected the many-to-one option from a menu
while constructing the flow diagram. The outlined FSM rectangle, 1^=0, in the flow dia-
gram is the visual feedback for this option being selected.

20

fsmjimerjmessages module []

j^iI$@§^IRED ?FL-P-
tlD CHANNELID []

piN@Tj$£Q_ _•_ ;_,_ SE^ °
PID

vV...«-» *

CHANNELID [] TIME integer []

CQ|IN@|3|aEQ j SET II
pro CHANNEL!» []

>:>_.. W:^.^.w::*^»-ff-:^:'^-^:":?.::"':T>"

fcHMffE£>n* SEQUENCE Ü;

g HANNELSTORE SEQUENCE £]

6ib
SI

CHANNELID [] i
i

WMi%:SEJ-:y-\Yf

£ro
.::i

CHANNELID [] i
■

SET n

lc*ib CHANNELID [] i
i

. SET I]

£ID CHANNELID []

ED

Figure 6. Message Diagram

21

When messages are put in the hopper a constructor function is used. In this case the mes-
sage contents is simply copied. The constructor function is shown in Figure 7.

Figure 7. Constructor Function

At the time the constructor is activated a message buffer would have already been allo-
cated. The typical scenario would be to fill in fields of the message. In this case the objec-
tive is simply to duplicate the message received. One way to accomplish this task is to
delete the current message under construction. This is done in line one of the constructor.
Line two of the constructor duplicates the last message received and assigns it to variable
"msg". "msg" is a reserved word which points to the current message under construction.
When the constructor is existed default behavior will send the "msg" message.

22

6.1.4 Side-effect Functions &Stub Files
The last piece of protocol definition to look at is the side-effect function "decandcheck"
Source code for side-effect functions are stored in stub files as seen in Figure 8.

»♦a**

* timer.stubs.ac - Fill out the stubs in this file

#define lmsg GENERICMSG
I*
* decandcheck, which is invoked by the following:

* decandcheck((TQJNqT.REQ *) evP->u.iv.adP, &EXPIRED_P);

*/
int decandcheck(TQ_INqT_REQp. EXPIRED.P)
TQ_INqT_REQ* TQ_INqT_REQp;
enumtype_EXPIRED_P* EXPIRED.P; {
#ifdefDBG
printfC decandcheck: EnterV);
#endif/»DBG*/
if (TQ_INqT_REQp->TIME > 0)

/* TQ_INqT_REQp->TIME = TQ_INqT_REQp->TIME - 2; */
((TQ_INqT_REQ*)lmsg>>TIME = ((TQ_INqT_REQ*)lmsg)->TIME - 2;
*EXPIRED_P = EXPIRED.PqF;

}
else
*EXPIRED_P = EXPIRED_PqT;

ÄfdefDÜCJ "
printfC decandcheck: ExitV*);
#endif/• DBG */

}
#undefimsg Figure 8. Stubs File

Most of this function was produced automatically as part of the code generation process.

The "if' statement in the body of the function was the portion added by the user. 1Je"if"
statement both decrements the counter and sets the "expired.p" variable to "T" or "F".
Constructors can access messages by use of reserved words, lmsg & msg, or by parameter
passing. The comment in the "if' statement shows the alternate parameter method.

23

The Client FSM and its constructor is shown in Figure 9. The Clier.t FSM "app" is very
simple. From the start state SO, it unconditionally moves to SI. SI unconditionally sends
the "t_req" message to the server. Just before sending the message a one line constructor
function takes an integer from the command line and places it in the "TIME" field, "app"
then moves to state S2 where is waits for the" expired" message. Upon receiving the
"expired" message it terminates.

Figure 9. Client FSM and Constructor

All the building blocks used to define protocol in the APART environment have now been
covered. This concludes the walk-through of the first example.

6.1,5 Work Flow Protocol Example

The second example is intended to show how robust protocol can be constructed out of the
basic building blocks. Figure 10 contains a flow diagram for the "work pool" example.
The "work pool" shows how a protocol can model business activity of a company. A
fairly typical business activity is to match up customers who are requesting a service with
employees, workers, who will provide the requested service. The key feature of this activ-
ity is that there are a variable number of requestors and a variable number of workers.

It is assumed that any requestor can be serviced by any available worker. For example
purposes the protocol exchange will be the subject of focus and less on business activity.
In this regard side-effect activity will not be shown. Typical side-effect activities would
include database inquiry, calculations, and report generation of whatever the business
deals with.

This protocol is defined as three finite state machines. One represents a worker, one repre-
sents a requestor and a third to manage the activity of associating requestors to workers.
Initially requestors are not aware of workers. This means that requestors do not know the

24

Figure 10. Flow Diagram For "Work Pool'

address of any worker. In this example there is only one pool FSM. At code generation
time a unique identifier is allocated to the pool FSM. All worker and requestor FSMs
know the pool FSMs identifier. Identifiers are converted to real network addresses at run
time by a name server.
In the pool protocol four scenarios exist:

1. A worker announces availability to service a requestor, but there are no outstand-
ing requests.

2. A request is made, but there are no available workers.

3. A worker announces availability to service a requestor and one or more requests

are pending.
4. A request is made and one or more workers are available.

It is the pool manager finite state machines job to handle scenarios listed while remember-
ing worker availability and requestor requests. As soon as there is an available worker and
a requestor the pool manager will send a message to the worker identifying a requestor.
Once the worker has received the requestors identifier, it can then communicate directly

without the aid of the pool FSM.

25

Each of the FSM diagrams for the protocol will now be presented. Figure 11 shows the
worker FSM.

^mimmm^i^^mmiim^mm^ess^
fjjllf FSM Diagram BuikUrfor: workw> f.£' SZZ'A'>fJMti

aagu^QaaoajaEJ^iaüi worker I**;

inSrequest
/ req_out@response

Figurell. Worker FSM

Starting at the start state, the worker sends a "register" message to the pool FSM. It then
moves to state SI. In SI it waits for the pool FSM to pass on a "request" message from a
requestor FSM. The request message contains the address of the requestor. The worker
FSM can then use the address to construct a "response" message and send it direcdy to the
requestor.
Figure 12 contains the requestor FSM diagram. Starting at the start state, the requestor

Figure 12. Requestor FSM

sends a "request" message. It then moves to state SI. Two messages are possible in state
SI. It can receive an "ok" message from the pool FSM in which case it discards the mes-
sage and returns to SI. It can receive a "response" message in which case is move to S2
and terminates.
Both these diagrams convey the simplicity of the exchange from a conceptual point of
view. There is fairly sophisticated data communications activity taking place in support of

26

these protocol design concepts. This is the essence of APART tool usage. The protocol
designer can concentrate on protocol design at a high level.

The next diagram to look at is the Pool FSM, see Figure 13.

,i

Figure 13. Pool FSM

From the "start" state thepool FSM sets the variable HOLDMSG to the value "vacant". It
then moves to state SI, j3. SI is the main waiting location. From here the diagram is
organized into two branches. The upper branch takes care of worker communication, and
the lower branch takes take of requestor communication. In either case the FSM will
return to state S1 to process any subsequent messages from the other FSMs.
Upon receiving a "register" message, the FSM puts the message in the wq.out hopper fol-
lowed by an "emptytoken". It then moves to Q.S2. At S 2 it will check to see if there
are any pending requests for the now available worker. If the request hopper is empty it
moves to S11 and back to S1. If there is a pending request, it is taken out of the hopper
and placed in the variable HOLDMSG.
The FSM then moves to S ,S3. In S3 it takes the "wregister" message out of the hop-
per using the request message in HOLDMSG, constructs a new "request" message and
sends it to the worker. Note that the original "request" message and the "register' mes-
sage have now been removed from the hoppers.

27

At this point, the pool manager has performed its function of matching up a worker and a
requestor. State S10 is a housekeeping state which shuffles the queue until it finds the
"emptytoken" message which is removed. Once this is done the FSM moves back to the
waiting-for-input-state SI. Figure 14 shows the one constructor function used to build the
pw_out@request message. It takes the message in the HOLDMSG variable and places it
in the "msg" variable which causes the message to be send as part of the transition side-
effect acrion.

Figure 14. Constructor for "Request

Lets now take a look at the lower branch for requestors. Upon receiving a "request" the
incoming message is placed in a variable, an emptytoken is placed in the worker hopper
and an "ok" message is sent back to the requestor FSM. Note that the last message
received can be referred to by the reserved variable "lmsg". The FSM then moves to S5.

At S5 two things are possible, a worker is available or it is not. Availability is indicated by
the presents of a "register" message in the hopper. The wq_in hopper is checked to see if
a worker has registered. If a register message is available then a "request" message is con-
structed and sent. The same constructor function is used as in the upper branch of the
FSM. State S7 is a housekeeping state which shuffles through the hopper and removes the
"emptytoken" followed by going back to the wait state, SI.

The constructor is slightly different for wq_out@register. As shown in Figure 15, the last
message received is the same message that is put back in the hopper. This can be accom-
plished by simply putting the "lmsg" into the current message "msg". Note GENERIC-
MS G is another name for "lmsg".

j'j;;.y^::-!t-:i<'i-'-^ MSO CoMlniclor »cure« cad«: wq_out®wr»<|l«»r M

ADJ3ESTROY (msg) ;
msg - D_ad_dup(GENERICMSG) ,-

wj|*»j"^ iiHinaamsWiii

Figure 15. Constructor for Register

If there is no worker registered then the "emptytoken" would be at the top of the hopper.
Receiving the "emptytoken" causes the FSM to put the "request" message in the request
hopper and returns to the wait state, SI.

28

For the sake of completeness the message format diagram is included below in Figure 16.
This diagram was generated automatically. A default message format was given to each
message referenced in the FSM diagrams. As a result of the many-to-one option being
chosen for the worker and requestor FSMs, APART automatically includes an identifier

field in each message, CID.

' |qBBMi^fliaaajSjaMn?ittKa7K>i
aaduk (]

•K ««REQUEST SET [1 ...

.Öp"™-IIIII-äK;IsEÜiJäIji" i

* 1N#*£QUIST: s ,. >..SKT __U ^
^IZZ*Z"Z"5lA^LUl--U------.T.T^

tr»_¥¥T.",Te°<fg°""**r

pi:T««Brgi>r»;!'teCi igiiiiii SÜ3

^ffminyM-i-'-'r»^«^'-'-^;; 13

h"™" m ::W,ytwg- ■■^■■:

h°"»"""" ■-■■■■«ruTvrp til

w&aiwcöcSwöc^SS«^ ■v^^<<>>aW^^fti<|Wiff«Wlg

Figure 16. Work Pool Message Format

29

6.1.6 Reuse Example
The last example in this section demonstrates the idea of reuse. Finite state machine dia-
grams from different stacks can be recombined and thereby reused as high level building
blocks for new protocol. Figure 17 shows this kind of reuse. The flow diagram was con-
structed by loading both the timer stack and the pool stack which constituted the first two
examples. The FSMs are taken out of their respective stack objects and spilled onto the
window The FSMs can then be connected into a new configuration. In this case the timer
FSM is connected to the requestor FSM providing a timer service to the requestor. Two
additional channels are added to the requestor FSM in support of the new configuration.
All the FSMs can then be packaged into a new stack which then contains the super set of
protocol behavior.

gaiaajeagiMQajsjEjBaaaiüjiicpioi

pool-ack

'worker 4 \freq out Ww out Aw i

4«

r in

J£_

riq_°
rP<»W rpr out Wrqout

A«5_out V"*-1"

&tq^outVtc*-in

ft in2

c out yr.ac* V=6
Requestor

Figure 17. Timer Protocol Reuse

This section was intended to introduce APART and how protocol can be described graphi-
cally. Further detail is covered in sections to follow. An enumerated description of all
APART functions are documented in the "User Guide".

30

6.2 Look and Feel
This section will report on how the objectives of look and feel were realized and what was

learned in the process.

6.2.1 Basic Building Blocks
As defined in the model section, protocol is defined through use of three interactive
<rr*phic diagrams. The diagrams have been named data flow, finite state machine and
AiN.l message format. Each diagram deals with a category of protocol information.
Each diagram has its own style and associated look and feel features.

• Finite State Machine
The finite state machine diagram was developed first. The design objective of this dia-
gram was to provide simplicity while being powerful enough to represent all the details of
a robust protocol. In this endeavor the team was looking for a solution which provided a
clean division between the key functions of protocol and low level detail specific to a par-
ticular environment or application. Key functions have to do with state of a protocol.
State or memory organizes, controls, and limits protocol behavior. Such control if faulty
can lead to deadlock conditions. The team wanted to make sure that this category of
behavior is clearly visible in the APART tool environment. Functions which do not have
state characteristics fall into the second category. Such functions are much less likely to
cause protocol failure. Such functions are assumed or guaranteed to complete without
waiting on external stimulus. The behavior of these functions can remain less visible.

The graphical building blocks of the FSM diagram consist of: states, transitions, variables,
and side-effects. States, transitions, and variables are all visible to validation. The less vis-
ible behavior is packages inside side-effects. The internals of side-effects are by definition
not visible to validation.

• States
States were given the look and feel of icons (bitmaps). The icons can be customized to
convey high level purpose. There is always a trade-off in screen space for a given icon
and the graphic detail that can be represented.
Our experimentation included using icons varying in size from 8 to 48 bits on a side. It
was found that sizes of 16 to 32 provided sufficient detail yet kept the diagrams within rea-
sonable size. The bitmaps supported are rectangular, but not necessarily square. This pro-
vides some interesting variation. Figure 20 on page 35 shows examples of icons.

• Transitions
Transitions which have the same start and end points have an impact on icon size. The
graphic for a transition is an arrow, "**. The arrow is a straight line with the base end
attached to the source icon and the arrow head attached to the destination icon. In the case
where the source and destination states are the same an elliptical curved arrow is used

pointing to the mid point of the icons side ^. For very small icons such a transition
arrow becomes hard to see. This has turned out to be the only major limiting factor for
icon size. To clearly show return paths in a diagram, dummy states □ are sometimes

31

added. Dummy states are states with transitions that have no precondition or side-effect.
It has been discovered that clarity of a diagram is improved by making such dummy states
very small. Figure 18 shows an FSM diagram which uses both the elliptical arrow and
dummy states conventions.

[FSM Diagram Bulldar ton Ml j

oaaaaaBOBjaeiaiBu Ml

<&

Figure 18. Elliptical transitions & Dummy States

Each transition ""** has an anchor point 0 that looks like a small round button. The
button is an active graphic object which can be selected, and to which precondition and
side-effect text can be attached. The anchor point and any text attached are all associated
with the transition and get dragged along with any movement of the arrow. There can be
an arbitrary number of arrows leaving or entering a state. There can be an arbitrary num-
ber of arrows between any two states.

In an attempt to keep the diagram as clean as possible, straight lines were used to attach to
either the upper left or right of the icon. Graphic constraints are used to dynamically
determine which corner to attach the arrow end. Notice in the above diagram the null tran-
sitions are attached to the upper right of the icon while the elliptical transition is attached
to the upper left.

When transitions are stacked on top of each other, there needs to be a way to select indi-
viduals. This capability is achieve through a behavior of the anchor point button. The
anchor point button can slide along the transition arrow. When a transition is constructed
on top of other transitions the anchor point automatically slides along the arrow so as not
to overlap any other anchor points. This makes it possible to uniquely select each transi-
tion by choosing the correct anchor point.
Such selection is necessary in support of diagram editing. When a button is selected the
transition arrow is automatically moved to the top of the pile of graphic objects. This sets
up the condition where you can reliably select a single transition no matter how many are
stacked close to or on top of each other. An editing behavior is provided to disconnect and
reconnect the end points of the top arrow to any desired state icon. It was found that this
combination of graphic behavior is fairly effective while supporting an arbitrarily large
number of connections.

• Text Support

One additional behavior was necessary to support the construction of clean diagrams

32

which has to do with text. In constructing FSM diagrams, one of the major concerns is the
layout of text and graphics. For readability, it was necessary, in some cases, to allow the
user to move the text and anchor point relative to the arrow. Even when the anchor point
is moved off the arrow it is still attached with a relative offset. Any movement of the
arrow results in a corresponding move of the text. With the addition of this feature, the
goal of being able to construct a readable FSM diagram was achieved.

• Interface to "C" Functions and external packages
Readability is the valuable characteristic in using diagrams. The goal is to provide a com-
plete high level view of a protocol through use of a single diagram. In concert with this
goal preconditions and side-effects tend to be fairly brief and can reasonably fit in the dia-
gram At the same time it is necessary to support the linkage to "C" source code both
large and small as well as entire external software packages and libraries. Such linkage is
used to connect the protocol, as embodied in the diagram, to systems functions and exter-
nal applications.

ijiwwaäw^^^g«^^

Figure 19. Interface to "C" code

To address the issue of diagram space three ways of attaching to "C" code is provided. If
the "C" source code is very small it can be placed directly on the diagram resulung in in-
line code. An example is provide in the top transition of Figure 19. This reduces com-
plexity for the very simple case. Another scenario is in message construction. Whenever
a message is to be transmitted, the normal behavior is to execute some function which fills

33

in the fields of the message. This being the typical case, there is specific graphic support
for it. By clicking on any output message name in the diagram a text window will be
opened. This window is initially empty, but will contain code to fill in the outgoing mes-
sage. An example can be see in the bottom transition of Figure 19. This code can be
thought of as a method in the object oriented paradigm. It only needs to be defined once,
but whenever the particular message is transmitted the constructor function will be called.
Constructor source code is integral with and saved with the diagram

For very larger source files it is more advantageous to save them separately from the dia-
gram. Function call syntax provides the linkage. These separate files called "stub files"
can be edited and recompiled external to the diagram. An example can be seen in the mid-
dle transition of Figure 19.

These various ways of combining code provides flexibility of integration. It also makes it
possible to combine diagram generated code to traditional text based modules.

• Key Strokes Efficiency
One of the goals in diagram construction was reduction of key strokes. Reduction of key
strokes is one measurable way to evaluate ease of use. In pursuit of this goal the team
invented the cookie-cutter behavior. The first action is to choose which type of component
you want to construct, be it a state or transition. By pressing on the state icon in the main
menu, an icon is produced and attached to the cursor. The user can then move the icon to
the desired location. Clicking the mouse causes the icon to be deposited at the current
location and another icon to be manufactured which again is attached to the cursor. This
depositing and duplication gives the appearance similar to stamping out cookies. The
cookie-cutter mode is exited at any time by click the middle mouse button. A similar
sequence is supported for transition arrows with the added ability of attaching to icons that
happen to be under the cursor at the time the mouse is clicked. State icons remain active
objects. They can be dragged individually or as a group. Transitions act as rubber bands
and stretch between their source and destination. Once activated states can be manufac-
tured and deposited with a single key click. Transitions with two key clicks. It has been
our experience that the cookie-cutter behavior makes diagram construction efficient

34

To customize icons a palette of icons are provided as can be seen in Figure 20. A drag and
drop behavior is used. Clicking on an icon in the palette will cause it to be duplicated and
attaches to the cursor. This new icon will replace any existing icon in the FSM diagram
when it is dragged and dropped on top. This is a fairly intuitive behavior.

s»

tra"sro c
H 8 ° * mm

H» m w m i
is» ii s ■ m m o^gaa m■■

rmrryry^r™

Figure 20. Icon Palette

62.2 Overall Meaning of the FSM Diagram
The task at hand is to provide a well structured, meaningful, machine processable defini-
tion for protocol. This is sometimes in contrast with protocol that people may devise. Peo-
ple can deal with uncertainty and infinite values. To bridge this gap, our strategy includes
the idea that some portion of a protocol definition may remain unbounded, but still provide
useful order to the process of protocol construction. This is achieved by dividing up pro-
tocol behavior into two categories. The first category is all the behavior explicitly visible
in the diagram as states, transitions, and variables (messages being a type of variable).
This set of information is visible to validation and well defined. An associated attribute of
this category of information is that it is computable within some reasonable time. Informa-
tion which is unbounded is placed in the second category. The second category consists or
environmental variables and variables with very large range of values. This second set of
information is carried in side-effects. Selected portions of category two information may
be feed back as variable values, but most would remain behind the scenes and therefore
not visible to validation. These two categories exist for practical reasons. To achieve pre-
dictable protocol behavior it is also necessary that side-effect functions adhere to certain
guidelines. It is this adherence that makes the diagram a true representation of the proto-
col and an accurate high-level description. The next few paragraphs will discuss how to
formulate side-effects that adhere to such guidelines.
Diagrams need to support the notion of deterministic behavior. When given a diagram,
only one interpretation of behavior should be valid. To fully achieve this goal, it is neces-
sary for the user to restrict himself to common patterns of usage. One such pattern
requires that side-effect functions be atomic. That is if the precondition is true then all of
the side-effect function is performed. Another requirement of atomicity is that side-effects
are completed before the state transition is completed.
Some patterns of usage are more for readability then determinism. One such pattern

35

requires that a variable not be set and tested within the same transition. This would consti-
tuted hidden states. Such states would not be visible to validation. Other patterns are visi-
ble to validation, but may be difficult for humans to deal with and therefore should be
avoided. An example would be, from any state that all preconditions should be mutually
exclusive. If more then one transition could be true at the same time, then it is unpredict-
able which transition would be taken. The resulting protocol may very well behave prop-
erly, but most likely would lead to confusion on the part of the reader.
The clear separation of the two categories of behavior directly impact the practicality of
protocol validation. As a goal, the team wanted the visible category to represent all proto-
col behavior and at the same time wanted to reduce the number of variable values. It is
our observation that humans tend to keep a limited number of details in mind at any given
time and therefore protocol tends to be limited. This is not always evident from the way
protocol has been defined and documented. It is the tool user, designer, responsibility to
convert what might appear to be unbounded protocol features into well formed behavior.
Notions associated with qualitative reasoning can be applies in this situation. Given a
variable with many values, 0 to 2*32, there are usually only a few decision points. This
typically manifests itself by checking for boundaries. It is only the boundary values that
need be visible for validation. This greatly reduces the number of significant variable val-
ues. In the case were there are no obvious boundaries reasonable arbitrary ones can be
applied.
6.23 Flow Diagram
The flow diagram provides the highest level of abstraction with which a protocol can be
viewed at a single glance. The flow diagram contains the organization of the protocol
components. Such organization compartmentalized the protocol definition. In object ori-
ented style this provides the possibility of adding, deleting, or reorganizing components
without having to reemployment the details.
The flow diagram packages up a group of FSMs, the FSM organization, and an ASN.l
diagram into a composite object called a stack. A stack can be saved on disk as a persis-
tent object. The persistent object contains all relevant protocol information, the graphics
as objects and their geometry as well as protocol state behavior, message format, and asso-
ciated side-effect source code.
The combination of Row and FSM Diagram provides the user the ability to move from
high level to low level. By clicking on a component of the flow diagram a window is
opened showing the details of a finite state machine using an FSM diagram. Such graphi-
cal behavior has a hypertext flavor in that you can request to see the details of selected
portions in any order.
With these few building blocks both simple and powerful application architectures can be
constructed. The examples in the Model section are offered as evidence that starting with
the most simple distributed application one can progress to client/server and workflow
architectures of arbitrarily complex design.

36

62.4 ASN.l diagram
Message format, the ASN.l diagram is the third and final type of diagram used to define
protocol The look and feel goal of this diagram is to provide a convenient way to con-
struct and edit arbitrarily complex messages. It was designed to handle the components of
the standard notation called abstract syntax notation one, ASN1. Even though there is an
easy mapping of one to the other it is not tightly bound. In order to construct messages the
user is not required to know the detail encoding rules for ASN.l. The user deals with
generic building blocks made out of "sets" and "sequences" of primitive items. Primitive
items are represented as rectangles. Primitive items can be grouped. Such groups are
referred to as structured items.
Five basic structured types are given unique graphic shape. The five types are: set,
sequence, choice, set-of, and sequence-of. Graphic examples of the five types are pre-
sented in Figure 21 below:

i*mc29 SET-UP ()
mmM We«er SI

^■■■■t ,

Figure 21. Message Structure Types

37

One of the prime design issues in displaying complex objects is screen space. The team
wanted to make the most advantageous use of screen area which is a very limited resource.
One notion was to proportion the objects based on their complexity. A more complex item
would be given more screen area. In Figure 22, the diagram on the left is set to equal siz-
ing while the diagram on the right is set to proportional sizing. With proportional sizing,
there is a better chance at seeing all the detail at a glance.

ffffiiJtlf ^^ ^f ^^ *-* ^^ ^* *** ** ^* ^^ *** tft£-M_mi—qfil ;

:*'V: S:*;y::>'"i

iune29 SET []

turn» äüiöt IjJlBJiJSJ:

p □
0

»am*4j

iame29 SET []

jimiöi: iiätni^iggg||gi|
: iame42

iame43

iazne46

Figure 22. Proportional Spacing Example

In some cases, the complex items may not be the ones of most interest. A notion of
shrinking was used to accommodate this need. In Figure 23 below the complex item on
the right was marked as shrunken. To determine which objects have been shrunken they
are marked with a hatched pattern. The result is that no matter how many sub-items are
present the object is sized as if it is a simple primitive.

Raw DUgram BuHdw. «ifl«gt

riaiHi- l^lil..l^MPI3i^Plr^l:-: my.

[&^^0^WfS^0&MSi^&^
::iame29 SET n

«MO*:; iijwöSl^ »«HOT:*

lllllf ir* lilt
iu»29 SET D

R:il
im^iäSBSäöft

O
O
O

■ iame36

Figure 23. Shrinking of Complex items

Message format diagrams support the user in concentrating on organization without hav-
ing to constantly deal with item detail. The primitive items are usually integers, character

38

strings or a sequence of octets (8 bit packages). During the design process, the user deals
with them as logical nested items. The nested structure supports the cutting and pasting at
arbitrary levels of abstraction. The ability to grab structured objects as single items
reduces the likelihood of error when making adjustments in message layout. In Figure 24
on the left an object made up of three sub-parts has been duplicated with a single key-
click. The right shows the results of pasting the duplicated object into object "nameö .
Notice how the objects have been resized automatically.

Figure 24. Manipulation of Structured Objects

39

To conveniently manipulate message format, approximately thirty edit functions are pro-
vided. A goal for diagram construction was to gain rapid access to any of the functions
while at the same time avoiding the necessity of memorizing many key strokes. This was
achieved with the use of three floating menus and a stylized cursor.

The custom cursor, MUIPJ, suggests the function contents of each menu: moving, editing,
or opticn setting. One menu is attached to each of the three mouse buttons. Any of the
thirty functions can be executed by one mouse down, drag and release sequence. So long
as the pop down menus can be activated rapidly even experienced users can stick with the
menu interface. If menu activation is quick enough, the user treats the pop down menu as
a hand action without having to read the individual items. It becomes ingrained that a left-
mouse-click and third item performs a desired function. Figure 25 below show the three
pop down menus.

Figure 25. Pop Down Floating Menus

6.2.5 Ease and Speed
The productivity of graphic diagrams went a long way towards the goal of speed. There
are fare fewer keystrokes needed to construct a finite state machine by way of diagrams as
compared to if-then-else textual statements. The diagrams are a higher level of abstraction
with fewer possibilities of error during data entry. Information in the three diagrams can
be cross checked.

40

A particular productivity enhancement was gained when it was found that some missing
information could be automatically added. At the time of information gathering, in prepa-
ration for code generation, if messages were referenced but not defined, default format
was added to the diagram. This provided graphical feedback to the user and also saved
data entry time. Consistency between finite state machine diagrams and the set of mes-
sages were assured. During initial passes of protocol design, such default messages make
e :iy exercise of protocol possible with a low investment of labor.

A factor for ease of use is readability. The speed with which you can enhance or modify a
given protocol is tied to how fast you can learn how the implementation is organized and
where particular functions take place. The diagrams provide the big picture for the overall
organization. The state icons provide high level clues as to where functions are located.
Detail implementation can be directly accessed by way of hyper-text functionality. This
reduces search time when trying to find the associated low level functions. The aggregate
of such functions all aid in readability.
Reuse of protocol information provides another factor in support of speed. One example
pertains to message construction. The same message may be sent from different states.
Each time a message is transmitted it needs to be constructed. Construction is the filling in
of message fields with specific values. It is likely that for a given message type, format,
the construction will be mostly the same. The FSM diagram supports the notion of mes-
sage constructor. Similar to a method in object oriented programming, the constructor
need only be defined once for a given message type. The message may be sent from dif-
ferent states, but the same method will be applies unless over written.

6.2.6 Chained Mouse/Graphical Behavior
Interactive behavior can be initiated in two ways. The first it through a mouse action.
This is typical. A second way is through a function call which simulates a mouse action.
The same interactive behavior would be elicited in either case.
The cookie-cutter behavior of the Tool was made possible by this alternate mechanism.
To place multiple icons in a FSM diagram rapidly, the first icon placement interaction is
elicited by clicking on a button. This starts a behavior which constructs an icon object and
attaches it to the cursor. The icon object will follow the cursor as it moves in the window
until the next mouse click. This second mouse click triggers the depositing of the icon at
the current position. In addition it manufactures an event which looks to the system like
the original mouse action. This causes the sequence to start once again. This sequence
can be repeated indefinitely until a particular mouse action signals termination.

6.2.7 Graphic Objects Represent Protocol
The Tool paradigm provides graphical objects to represent protocol. The graphical objects
are made up of slots which hold protocol information and graphical behavior. The graphi-
cal behavior primarily deals with supporting the user interface during the construction and
editing process. Based on the defined meaning of the graphic objects, the code generator
performs a translation to executable source code.
A given translation depends on the target environment. The target for the first code gener-

41

ator was the Distributed Systems Generator1. For this package a set of files were gener-
ated which conformed to the defined application programming interface, API. This
particular API presented an application level service based on the Remote Operation Ser-
vice Element, an OSI standard. At the application level, message format is typically in
ASN.l notation using ASN.l basic encoding rules. The same set of objects could be
translated into code for other environments.

6.2.8 Persistent Objects Store Protocol
A major effort in the APART tool design was the ability to store protocol components on
disk. In this implementation of APART, protocol components take the form of Garnet
graphical objects. Such objects contain a complex nested structure of parts. Each part can
be an object itself. Objects are made up of mouse-key definitions and behavior functions,
location and geometry, associated text of each object, associated bitmaps of some objects,
and object relationships. In addition to the various types of information that needs to be
saved, the team wanted to be able to handle multiple instances of a given saved object.
This raises the question of how objects are named and uniquely identified. The team also
wanted to be able to combined saved objects into new objects. This implied that objects
may have to be re-named to support the re-packaging function. The names and addresses
being described here are for internal use only. The user is not directly aware of these
names. These are not the names the user gives to the FSMs and channels.

Each object present in APART has an internal name and address. A protocol stack is made
up of many objects. There is no guarantee that names will be unique between one session
and the next or between two instances of APART. To avoid name conflicts, the APART
tool combines all the protocol objects for a stack into a single complex aggregate object.
Once this is done all objects of a given stack are then members of the same object hierar-
chy.
During the combination process, each object obtains a unique relative name, address, with
which they can reference each other. Such references are used to record the object organi-
zation. That is, which state transitions point to which state icons and which channel con-
nections point to which channel objects etc. The fact that these are relative addresses
means that more then one instance of the same stack can be loaded into APART without
the relationships getting tangled up. At APART execution time when stacks are loaded the
objects are once again unbundled and given unique name and addresses relative to the
execution environment
The unbundling is necessary for several reasons. The first reason is that objects get dis-
tributed across several windows depending on which objects they are, and a Garnet object
can only exist in one window at time. For example, each FSM diagram of a stack is
placed into a different window. Another reason is due to object clipping. If one object is
contained in another it visibility is limited to the boundaries of the parent. In order for the
ASN.l diagram to appear outside the stack object, it needs to be unbundled. In some
cases, it is just more efficient to use absolute links between objects at run time. The final

1. A product of the Distributed Software Engineering Tools (DSET) Corp.

42

reason is in support for the reuse of FSM diagrams. The Tool provides a spül function in
which FSM objects of a stack arc taken out of the stack object and permitted to exist on
there own in the window. In this way, FSM objects can be gathered up and included in
other stack objects.
Bitmaps are not actually saved into the stack object when put on disk. Instead the file
name of the bitmap is saved in the object slot. When the stack is re-loaded, the bitmaps
are read from the standard directory and thereby only one copy of each bitmap is ever
stored on disk.
The above mentioned design results in the ability to store, retrieve, and reuse persistent
objects in protocol design. The value of this functionality becomes more obvious when a
team of people in parallel each build a portion of a protocol stack. During Ae integration
phase FSM diagrams made at different times with different copies of the APART tool wiU
need to be loaded together. APART is capable of performing this integration task even if
the protocol designers, working separately, chose the same names for FSMs or channels.

62.9 Overlapping Complex Graphical Objects
As the COS team wrestled with the problem of how to represent protocol graphically the
idea of nested objects came up. The team wanted to be able to manipulate the organization
of objects by simply dragging one object within another. Further the team wanted to be
able to reorganize the objects by simply stretching one object to encompass another.
When two objects are partially or completely overlapped, the question arises which one
should be selected when the pointing device is in the overlapping region. Typically this is
resolved by supporting the notion of one object being over or under another object. The
object on top would be the one chosen. In this case, the team wanted to dynamically sup-
port which object is on top without the user having to worry about it.
To support this notion graphically, the moving behavior was augmented to include testing
which objects were completely surrounded by the currently active, just moved, object
The algorithm re-arranged all contained objects to be on top of the containing object. This
resulted in the ability to select and drag any of the objects no matter how they are nested,
arranged or re-arranged in the window. This behavior is part of the data flow diagram. An
example of its use is depicted in Figure 26 on page 44. On the left FSM A and B are con-
tained in C The behavior places A and B on top of C. If the objects were to be rearranged
as depicted on the right then C is made to be on top of B while B and C are on top of A.

43

iViin'i'iiYiviUwSw^ :i:*;.;,iÄ^U<»>-*ä^>Ä^^

I Flow Diagram Builder: engage

aaEiaifflgiMQBiaEiaaaiDianga

i

m

7£-
^

£^p2

^c3 /kc4

li>itf::::::::::::::::^&:::::Ai'«jif'::::::::::: 7rT ' Vri

Hgure 26. Overlapping Objects

6.2.10 Custom in-but-not-on Behavior

Objects in APART contain other objects sometimes in a nested fashion. For example
FSMs are represented as rectangles which contain channels, triangles. As an.interactive
interface, APART needs to provide a way to select a channel and to select the FSM. Selec-
tion is typically done on moving the cursor within an object and clicking. If the user
points to a channel by definition the pointer is also within the FSM that contains it. A way
needs to be provided to select child objects and parent objects. To accomplish this task a
selection behavior of "in-but-not-on" exists in Garnet. "In-but-not-on" means that the cur-
sor is within the objects area and not on top of any child of the object.

While prototyping the interaction between the user and complex graphical objects, a need
arouse to be able to select various sub-components based on type. An example can be
seen with the stack object A stack object is made up of several different types of sub-
components. There can be a variable number of sub-components each of which can be a
complex object as well. In this case, a stack can have a variable number of FSM objects.

44

An FSM object in turn contains several different types of sub-component objects (chan-
nels, title, button, rectangle). It is desirable to be able to elicit different behavior based on
which component or sub-component is selected. To accomplish this task, a generic "start
where" filter was invented. The filter is a custom version of "in-but-not-on" that works
with three criteria. The first criterion specifies which sub-component by type is desired.
An example would be to allow the selection of any component of a stack object which is
an FSM object The second criterion accomplishes the "in-but-not-on" function. In this
case it only selects an FSM object as long as the cursor is not pointing to a sub-component
of the FSM. Such a sub-component could be a channel represented by the triangle. The
final criterion allows for the exclusion of sub-components as it pertains to the second crite-
ria, "in-but-not-on". An example would be to exclude the rectangle that represents the
FSM. Since the rectangle covers the entire area allocated to the FSM and being a subcom-
ponent of the FSM object there would be no way to be in the FSM area and not on a sub-
component. By making the rectangle an exception to the second filter the FSM object
itself can be selected. A filter can then be constructed which selects any FSM object as
long as the pointer is not over any sub-component excluding the rectangle. This custom
filter provides a convenient way to attach desired behavior to different components of
complex graphical objects.
6.2.11 Macro Expansion for Practical Validation
One of the original objectives of APART was to be able to make multiple use of protocol
information. In addition to code generation, the team wanted to demonstrate other uses
such as validation analysis. As eluded to earlier in the discussion of well formed protocol,
additional guidelines may be necessary in the pursuit of good protocol design. This is also
true for validation. Before validation can be performed in a real world situation all vari-
ables must have computable limits that are within the range of available computer power.
It is not to unusual for protocol to have variables with very large range. Even though it
mot practical to compute the interaction for all possible values in these situations it is still
valuable to do so for a representative sample. To go along with this notion the team
wanted to make the designation of the sample convenient. The solution took the form of a
macro. Macro in this case refers to a statement in the APART language that expands to
one or more transitions. An example of such a macro is covered in the following para-
graph.
From a validation point of view, APART considers all variables to be enumerated types.
To analyze a variable means to check all state transitions for each defined value. The task
at hand comes down to defining all the values of interest. Defining in this case means to
add a transition in the FSM diagram for each of the defined values. Such transitions could
be added just like any other transitions, one at a time. To make this process convenient, a
macro was designed that supports the creation of groups of transitions with a single state-
ment For example, the following macro statement generates a set of six transitions each
with a precondition for a value of variable "C" and with a final transition that sets variable

"iszero".
(val :var c rrange (genseq 1 6) rresult iszero)

45

In Figure 27 below the VAL macro is show in its compressed form. In Figure 28 the
expanded transitions can be seen. Under normal circumstances the user would not need to
view the expanded form.

Figure 27. Macro Example

Figure 28. Expanded Macro

In'addition to generating the transitions, the macro identifies the transitions to be for the
purpose of validation. It is then convenient for the user with aid of APART to include or
exclude these transitions. Such transitions would only be included during a validation ses-
sion and excluded for code generation.
6.2.12 Isometric Projection
One of the objectives of our research was to demonstrate the reuse of protocol information
as well as to present the information in graphical form. One of the results of this endeavor
was isometric projection of finite state machine diagrams. The key benefit of isometric
project is to better present state variables and their role in protocol behavior.
From a theoretical point of view, states and variables are interchangeable, but at the same
time they have significantly different visual appearance. Unlike states which have a single

46

geometric location, variables are global. Setting a variable potentially can effect many
points of the finite state machine. This makes it hard to visualize how a variable effects
protocol behavior.
Isometric project is a way to give graphical place to variables and their values. Variables
can then take on graphical characteristics of states. The idea is based on the fact that each
variable value effectively multiplies the number of states. The following windows pro-
vide an example of the interplay of variables and state. Figure 29 shows an FSM diagram
with four states and one variable. The variable, VAR, takes on three values (42,88,99).
From a cursory look at the diagram it seems that there may be an infinite loop by traveling
along the path S3, SI, and S2. In actuality the loop is traversed only once ending in a
deadlock condition at state S3.

DSSgjSQglMORjaEl^HaGI MO 14:28:19 2/7/1994

varS42 / var@88

/ var842

varg99 /var@88
 «.

var@88 /var899 o
/ var842

1

Figure 29. Variables in FSM Diagram

In the isometric projection of Figure 30 three planes are drawn, one for each variable
value. A state is drawn on a plane if the state can be visited at the same time the variable
is set to the value designated in the plane label. Potentially the original four states can be
duplicated three times and shown once on each plane. The state will be shown only if
there is a defined combination of state and variable value.
In Figure 30, state SO only appears on the VAR@42 plane because this is the only combi-
nation possible. States S3 and SI appear twice displaying the fact that the variable takes
on two values while in these states. Its interesting to see that state SI on plane VAR@ 88
is a dead end. It is not the stop state and there are no arrows leading out. This is the
graphic representation of a deadlock condition. The deadlock condition is clearly visual-
ized in the isometric projection. Such diagrams are automatically generated from the orig-
inal information. This is a clear example of how information can be used in different ways
for better understanding.

47

Figure 30. Isometric Projection

6.2.13 Dynamic Menus by Introspection

To provide ease of use, particularly with minimum training, it is advantageous to provide
menus in support of the graphic interaction. Being that this was a prototyping project with
iterative development, the team wanted to experiment with ways to automatically keep
menus up to-date as the graphical objects evolved. If each object had sufficient informa-
tion stored within it, it should be possible to construct the interface menu by extracting the
necessary information from the object programmatically. The added value to this
approach is that when the objects are enhanced during the iterative process, the interface
menus are automatically updated to reflect the latest set of functions and behavior. A cor-
ollary objective assumes that such menus can be constructed fast enough at run time.

The menus served two purposes. The first was to document what functions were possible
for a given graphical object along with what mouse key-click triggered the behavior. The
second was to be able to trigger the behavior using the menu and thereby not having to
directly know or use the assigned mouse key combination.

To accomplish these two purposes, the menus had to contain three pieces of information: a
name for the behavior that the user can identify, the key-mouse combination to start the
behavior, and the location on the screen where the key-click should be located to identify
the correct object. To request a menu, the user points and clicks on the object of interest.
The first step in the process is to identify an object at the location of the pointer. The
object is interrogated for all valid behavior. For each behavior an entry in the menu is con-
structed that contains the name of the behavior, the key-click that can activate the behavior
along with the original location. The menu is then displayed for the user to make a selec-
tion. To make a selection the user has to move the pointing device down the menu. By
choosing the menu item the pointer may no longer be over the desired object. To take care

48

of this condition, the next step in the process is to relocate the pointer to the saved location
and then generate the necessary mouse key-click event
The team found that dynamic menus are possible and can save development time particu-
larly if the iterative development process is used. The team made use of dynamic menus
in the flow diagrams. This approach placed some design constraints on the objects. One
constraint was that the behavior functions had to be packaged as slots in the objects.
Behavior functions needed externally meaningful names since they are made visible to the
user in the menus. Since the behaviors are triggered by mouse key-clicks, it became nec-
essary to made sure that there were no conflicts as additional behaviors were added.
Currently the menus are completely constructed each time it is called up. The speed is a
function of the number of behaviors associated with the object. Given the current hard-
ware it takes one to two seconds for the menus to appear. This is a little slow. An alterna-
tive could be to construct the menu the first time and save it in an object slot. This could
provide a significant speed up while still supporting the dynamic menu update capability.
An example of a dynamic menu can be seen in Figure 31.

•w^m^mi?!)^^^^^^^^^

~,~. „Jjff^Flow Diagram Builder: »ngagi %&3M&m&Z^$Wm

flSt&ffl £]«& m si emu 2*SBk37fca

«

:-»■

mm
lit

m \\»
mm
select-fsm s-c-i

fsm-many

delete-fsm

show-fsm

s-c-r

s-c-m

s-r

move-ch 1

dup-ch m

fllp-ch s-1

remove-ch s-m

make-ch 1

edit-label m

;show-ch s-r

Jalign-selected s-c-m

■^. „.>" -ww««y^j»aSiiM«'X'

Figure 31. Dynamic Menus

6.2.14 Hyper-text Buttons
Protocol as presented by the Tool is made up of several different parts. The parts are rep-
resented as active graphical objects. The team wanted these parts to have an active rela-
tionship so the overall organization of the protocol is apparent and supported by the
interface. One feature in support of this concept is the tieing of the FSM object: in the flow
diagram with the corresponding FSM diagram. The user can click on the FSM object in

49

the flow diagram and cause the FSM diagram to be displayed in its window. If the window
did not yet exist it would be created. If the window exists it would be opened and raised to
the top of the window pile.

Another feature is the relationship between message names in the FSM diagram and con-
structor source code. The user can click on the message name in the FSM diagram and the
constructor will be displayed in its window. If the window did not yet exist it would be
created. If the window exists, it would be opened and raised to the top of the window pile.
These relationships help bind the design together and help the user navigate over the vari-
ous parts of the protocol.

6.2.15 Simulation/Execution

The simulator module provides a means to check out the interaction of all the finite state
machines in a stack. This section first describes the look and feel of the simulator to pro-
vide some background. Discussion of the design decisions and prototyping experience
will follow the basic description.

The Simulator controls the separately executing, distributed, finite state machines through
use of an application level protocol. Its unit of control is the state transition. In order for a
FSM to proceed from one state to the next, in addition to the defined preconditions, it must
also get permission from the simulator by way of the simulator protocol. The simulator
itself is implemented as a finite state machine. A protocol has been defined with which the
simulator communicates with the FSMs of the stack. As part of the code generation pro-
cess, if the simulator is present, the code for each FSM is augmented to include the simu-
lator protocol.

The simulator finite state machine is automatically added to the stack when the user
selects "simulator load". As part of the loading process, the original FSMs of the stack are
augmented with additional channels used to communicate with the simulator. Figure 32
shows how the simulator is connected.

To start a simulator session the "simulator" "run" option is selected. The Tool running as
a Unix task starts the simulator FSM as a sub-task. The standard file input/output of the
sub-task is routed back to a separate process in the parent, Tool, task. This process waits
on data from the sub-task and thereby provides the linkage between the Tool graphics and
the simulator.

At this point, each of the FSMs in the stack can be put in execution as a separate running
unix task. The first thing these tasks do, as part of the simulator protocol, is to send a mes-
sage to the simulator. This message consists of the name of the task, a unique object iden-
tifier which is used for addressing, the values of any variables defined, and the contents of
the last received message if any. Upon arrival, a window is opened to display the status of
the FSM which sent the message. In our example stack there are two FSM tasks, Bob and
Susan. Figure 33 shows the two status windows for Bob and Susan on the left. The corre-
sponding FSM diagrams are shown on the right. Each FSM is now waiting in their initial
state, SO. This is analogous to a break point.

At this stage, the user can press the "GO" button within each status window. This causes a

50

Figure 32. Stack with Simulator
message to be sent to the particular FSM. This action can be thought of as putting; the
FSM Lo run mode. By pressing the "GO" button for the Bob FSM, it dkmd» FSM to
send the "WannaGoOut" message to the Susan FSM. At this point the Bob FSM transi-
tions to state SI. State S1 waits on the arrival of either the "OK" or "SORRY" message.
The status window for Bob is now shaded indicating that it is in run mode and not waiting
on a simulator message. Upon arrival of the "WannaGoOut" message Susan would have
transitioned from state SI to S2. Before Susan can check the "DanceCard variable the
simulator must give the go ahead. This is indicated by the "GO" button in the Susan status
window. Figure 34 contains a window group showing the status windows as just

described.
Pressing the "GO" button for Susan allows the transition from state S2 to S4 and the send-
ing of the "OK" message. With the arrival of the "OK" message Bob's status window
become un-shaded, displays the fact that Bob is now in state S2, and waiting on the simu-
lator to proceed. Figure 35 contains a window group that shows the updated status This
figure along with the previous two provides a glimpse at the simulator look and feel.

The simulator has to support several design objectives. One is the ability to control the
execution of the FSMs even when they are widely distributed over different machines and
at different locations. The team experimented with the idea that the simulator could be
iust another FSM in the stack and thereby take on the characterise of a distributed appli-
cation This approach gave the added value that the simulator FSM could be constructed
using the Tool itself. In order for the user not to have to deal with the simulator protocol
directly, the team took the approach that the code generator would be able to implant the
simulator protocol automatically in each user defined FSM. As discussed earlier, a transi-

51

outacasimViMctcxu^rvu,

-....,.»»w^«»^m».~.f.v;^mBnm;=ja

lüaaaa^*Qaiaeis>Bg1 s—

ouctOK DaaoMCartirull

_ln«H«nn«GoOut / (II
princf ("Bab cailad. Be wanta CO go to %a at %d.
lmsg->LOCATI(», ln»7->TIME).-]#)

'/ DanoaCardtNocFull

Figure 33. Simulator Look & Feel at Start-up

tion with all of its side-effects are non-divisible. This lead us to define the state transition
to be the smallest unit that could be individually controlled by the simulator.

Another major design decision was the graphical look and feel for the simulator interface.
Stacks could have a variable number of FSMs. The team wanted to automate the layout
and yet support this variability. The team experimented with trying to reuse the informa-
tion that was already present in the data flow diagram. The user laid out the stack and in
doing so organized the FSMs. The team decided to re-used this organization when laying
out FSM status windows. This works well in the simple case when there is only one
instance of each FSM. In cases where there are many-to-one relationships it was necessary
to support the layout of may instances of the same FSM which is drawn only once in the
flow diagram. The resulting design trade-off was that the original placement of FSMs in
the flow-diagram would be the starting place and the location for the first FSM instance. If
additional instances of the same FSM were to appear the corresponding status information
window would be stacked horizontally. This works well for a good many cases, but not
all. As the complexity of stacks increase this algorithm may need to be revisited.

As indicated by the scroll bar on the left of the status window, it was envisioned to store on

52

Figure 34. Simulator Window after GO button pressed
disk the incoming status information. This would allow scrolling forward and back of the
status information providing a trace history. Time prevented the completion of this func-

tion.
While the simulator and FSMs are running, several things can happen concurrently. At
the same time that the simulator is running and providing status update, the user can con-
tinue to interact with the graphical interface. To support this concurrence the Tool is
divided into two light-weight processes. One process continues to service the graphical
interface while the other waits on the reception of messages from the simulator task. The
two processes have the same address space to share and update the common graphical

objects.
Some additional functionality had to be added in order for the FSMs to send copies of its
messages to the simulator and on to Tool graphics for display. During the simulator load
process, simulator message formats are automatically added to the ASN.l format diagram.
The user does not have to be concerned with message format in support of simulation.
These message formats are used by the simulator code in carrying out the simulator proto-
col When the simulator task receives a message it decodes it into displayable character

53

Figure 35. Simulator Status after FSM State Transition

format before sending it on to Tool graphics. This relieves Tool graphics from having to
parse ASN.l messages. Alternate experiments included having the simulator send an
ASN.l formatted character stream to the Tool task, but this proved to be to inefficient.

54

63 Protocol Validation
There are a number of metrics that may be applied to a protocol to validate how well it
performs. A few common metrics include: deadlock, livelock, and whether there are

unreachable states.
Perhaps the most classic failure of multi-agent interaction is deadlock. Deadlock occurs in
communication when both ends of a channel are waiting indefinitely for the other side to
do something. Once a conversation is in deadlock, there is no way to terminate. A proto-
col that can lead to deadlock is poorly designed.
Livelock is less serious than deadlock. Livelock occurs when a protocol allows endless
interaction between to agents, without progress. For example, a protocol may allow one
side of a conversation to request an abort, and have it denied, request, deny,... etc. indefi-
nitely A livelock loop must have at least one sequence that would lead to terminate, oth-
erwise the loop would be in deadlock, by definition. As such, Livelock is less alarming

than deadlock.
Consider a finite state machine model of a protocol. If there is no path from a start state to
state X what is the point in having X? X is not harmful to the protocol; it is simply unnec-
essary More importantly, it may be some unfinished thought of the protocol designer, and
so perhaps it should be flagged at least as a warning. Clearly a protocol with unreachable
states is less a problem than either livelock or deadlock.

63.1 Proof Theoretic Approach to Validation.
To prove some property by hand, it would be necessary to establish that it holds for all
execution sequences. An execution sequence is a path (through the finite state machine,
following the arcs) that originates at a start state. For example, one may want to prove that
there is no execution sequence that leads to deadlock.
In general, Finite State Machines may (and protocol FSMs usually do) have infinite execu-
tion sequences. And likewise, it may have an infinite number of infinite execution
sequences. And so, proofs are accomplished by induction.
One proves that if, the property holds for an executable sequence of n-1 states, then the
property holds for the sequence of n states, where there is a link from the n-lth state to the
nth state. Restating this, such a proof establishes that all reachable states from a start state
retain the desired property.
Needless to say, manual proofs are rarely used on non-trivial protocols.

63.2 Validation Implemented in APART
The primary focus of the protocol validation component of the APART tool is to provide a
flexible skeleton for validation techniques. The APART team has implemented deadlock
detection on singleton finite state machines as a demonstration of design reuse for com-
puter automated validation.

55

iBMMW«a^!wi>&&>iÜ3^

ü
es

X»

o.
2
O
e _o

"2
3
8
i

3

56

Following deadlock detection analysis, a validation control panel is displayed as shown in
Figure 36. The panel indicates that there is one path to a deadlock condition. It also indi-
cates by the slider bars that there are 20 state transitions in the deadlock path. A green ball
indicates the start of the deadlock path which can be seen over the "start state" at the lower
left in the diagram. A red ball indicates the "state" where the deadlock is found and can be
seen over the "send state" at the right of the diagram. The state in inverse video is the
"current" state along the path to deadlock. As can be seen from the left slider, the current
state is the second of 20 along the path to deadlock. The user controls the "bouncing ball"
to travel along the path from start to deadlock with the slider bars in the control panel.

6.4 Code Generation and Compilation

APART automates the process of going from design to implementation. The final output of the
APART tool is a reference implementation of the newly defined distributed systems protocol.

APART translates the collection of diagrams into "C" code. The user then compiles the code into
a set of executable tasks with a single executable task produced for each finite state machine dia-
gram. APART provides hooks into the generated "C" code as well as "stubs" files where
the developer puts the "C"-functions. So the developer can call any C function to generate
or retrieve information from databases, the operating system, or ASN.l messages. The
generated process is depicted in Figure 37.

System
Definition

Glue Code

X

FSM"C
Source

Distributed
Processes

Figure 37. Code Generation Process

57

The current code generator supports design and implementation of protocols at the
application layer.

Compilation in APART is much like other compilers. In this case, the front-end to the
compiler is the graphics environment that is presented to the protocol designer. There is
an intermediate form of the program, a set of text based files. These files constitute the
input to the back end of the compiler. The back end of the compiler is a commercial prod-
uct called DSET. It converts a text-based program and compiles it to executable applica-
tions.

Stage One - Message Collection - In this stage, each transition in each FSM is visited.
Each message found is checked against those in the ASN.l diagram. If it is not there it is
added to the ASN.l diagram with the default type of OCTETSTRING (Empty character
string). All variables and their values are also collected together.

Stage Two - Packaging the FSMs for Code Generation - Each FSM is copied into an S-
Expression structure for code generation. This structure completely defines the states,
transitions, variables, constructors, C-code, queues, and messages for each FSM.

Stage Three - Code Generation Preprocessing - If the protocol designer has requested the
simulator to be included, then this step will interweave the FSMs with additional mes-
sages. The simulator requires that each state in each FSM update the simulator and wait
for its "green light" before transition to its next state. Once stage three is complete, the
following stages have no knowledge of the simulator, as all simulator related information
has been woven into the protocol.

Stage Four - Application Wide Definition - Generate the text files shared by all FSMs.
These include: messages.ad (the ASN.l messages and their formats), context.ctx (An enu-
meration of all queues, and messages that are to arrive on those queues), stubs.ac.h (type
definitions of global variables, queues, and address constructors), stubs.ac (Commonly
used functions, and address constructors for queues), and a Makefile (a shell-like file that
knows how to invoke the compilers and linkers with their proper arguments).

Stage Five - FSM Specific Code - Generate the three text files for each FSM. The name of
each FSM is used as part of the name for it's three files. If a FSM is named timer, then the
files generated are: timer.msl, timer.stubs.ac, and timer.ac. timer.msl is an enumeration of
all states in FSM timer that wait on a message, and for each state that receives a message
what procedure is to be executed. Timer.stubs.ac contains the functions for all C calls
used in FSM timer, timer.stubs.ac will be included into timer.ac automatically. Timer.ac
contains the code for all functions referenced in timer.msl. timer.ac generates in-line all
constructors for messages. Timer.ac converts all states that have variable value checks in
outbound transitions into C "if-then-else" constructs.

The protocol designer must open a command window to the operating system and type,
"cd ~/tmp", and "make". This will automatically compile the application and leave an
executable in the directory for each FSM.

6.5 Rapid Prototyping

Iterative models of software development are replacing the traditional emphasis on soft-

58

ware specification. This shift is propelled by the increasing voice of the end user in appli-
cations development, and facilitated by prototyping tools.

As competition in the software industry increases, the comfort level of the end user is
becoming an important means of stratifying products. Developers, if left alone, tend to get
too engrossed in their quest for capability, and often forget the non-expert user. And the
preferences of a user are difficult to anticipate. The solution to this dilemma is to bring the
user into the development cycle; to modify the product based on user feedback. Tradition-
ally, the cost of several iterations of product development before release, has been an
unnecessary expense when one can succeed by "just getting something out the door". As
the software industry matures, user expectations for product usefulness and usability
increase, thereby driving up the development costs.
Fortunately, software development tools are driving down the cost of developing a proto-
type. Perhaps the most common example of this is the user interface builder. These pack-
ages largely replace old-fashioned graphics coding with drag-and-drop development of
user interfaces. The speed and ease of development make it practical to feed user com-
ments back into a series of prototypes, each successively refined from its predecessor.

6.5.1 Rapid Prototyping Protocol with APART
APART is a rapid prototyping tool that allows one to design protocol quickly. Protocol is
frequently expressed in terms of messages, queues and finite state machines. APART sup-
ports these abstractions in a graphical direct manipulation environment. This enables one
to nearly eliminate the (text based) programming normally associated with protocol devel-
opment by plopping down and wiring together icons. These designs may then be sub-
jected to validation and simulation to iron out bugs early in the development cycle.
Further, APART generates C code equivalent to the pictorial designs that are then com-
piled to executable UNIX applications.
Since protocol engineers can express their cognitive abstraction directly, APART mini-
mizes translation confusion. Without automated translation from design to implementa-
tion, there is a risk that good designs are poorly implemented. Further, when problems are
found, it may be unclear whether the problem is design, implementation, or related to
both. APART's code generation eliminates implementation error, and APART's simulator
reflects the problem directly back into the finite state machine design.

APART allows one to concentrate on what is to be communicated, and not how. In the
Unix world, one has to be acquainted with the arcane internal calls of TCP/IP in C. Much
care has to be taken to ensure that the buffering of I/O is adequate, the interrupt signals
wait on the proper vectors, that one message is not lost while processing another, etc.
Point to Point communications between two programs require that each side know the oth-
ers address, or at least they know of a common address where their respective addresses
can be stored and forwarded to the other side of the conversation. Protocols with more
than two parties especially heighten this concern. APART allows one to ignore this minu-

üa.
The designer can generate a protocol that merely indicates who is to communicate and

59

when messages are to be sent. This will compile into a working prototype. When ready,
the designer can embellish his design to indicate the content of the messages to be sent
This can be compiled as well, for a more functional prototype. Later, when the protocol
designer is ready to interface the protocol to an application, he can fill out the stubs files
with the appropriate C calls to the API.

APART automatically resolves addressing. Unbeknownst to the protocol designer, there is
a name manager that maintains a database of known addresses. Whenever a party to com-
munication starts up, it announces the logical names and physical addresses of its input
queues to the name manager. When other parties need to send a message, they query the
name manager to obtain the correct address for a given logical name. This has many ben-
efits over compiling the address statically into the code. It allows the various sides of the
conversation to run on other machines without recompilation. It allows an indeterminate
number of clients in a client/server application. Most importantly, it allows the protocol
designer to work with logical names, as the physical addresses will be resolved automati-
cally.

6.5.2 A Prototyping Example: Bob Gets A Date

Consider a trivial example that shows the process of developing protocol in APART. It
will also demonstrate the time savings even for a trivial protocol. Note that the diagrams
of this protocol represent 13 files (19 pages) of high level "C" source code; code that
would otherwise have to be written by hand.

Bob will call Susan and ask for a date. If Susan says yes, Bob prints out "Yippie". If
Susan says no, Bob prints out "Rats." Susan will say yes.
This is enough to get started. There will be two parties: Bob and Susan. Bob needs to talk
to Susan, Susan needs to talk to Bob.

Diagram Bulld»r:flow-BobG«UADa1

Figure 38. Data Flow Diagram

Notice that the dataflow diagram Figure 38 has no addresses, it merely names the channels
of communication and shows where the messages are to be delivered. Addressing will be
handled automatically, thus implementing the logical connections pictured.

60

By clicking on the box Bob, the finite state machine diagram can be opened,(Figure 39).
Initially, it is an empty field with gadgets along the top.
As mentioned earlier, Bob will send a message to Susan and ask her out Then Bob will
wait for a response. Depending on her answer, he will print "Yippie", or "Rats."

Qasiaagim&JsiEi^^'-J Bob 15:19:39 iwm*

(#[prlntf ("Yippie ");]#)

g*a«a**s^

Figure 39. Bob Finite State Machine

SO is the start state. S3 is the terminate state. On each transition, the precondition is indi-
cated before the slash and the action to be carried out after the slash. The SO to SI transi-
tion has no precondition (i.e. nothing before the slash). It says, "when in state SO ^
immediately go to state SI and send message "WannaGoOut" out the queue called c2 .
In state SI, there are two transitions out, indicating two possible paths of execution-. The
transition from SI to S2 will be executed if a message called "ok" arrives on queue "cl .
If "ok" does arrive, then call the C function printf to print Yippie. However, if the mes-
sage "Sorry" arrives on queue cl (while in state si), then print "Rats". In either case, ter-

minate the program.
Notice also that the messages to be exchanged were declared without specifying the con-
tent of those messages. The tool user can fill in the content on a later prototyping pass.

61

Susan will wait for Bob's call and will answer affirmatively.
WM

vfnfftVi'rtWi'iv ---■---------••• -.*^m? ■ ■ -^^^—^^^^^^t ''•"■i""""

DaBH^QQjBaBjsjEj.^a"Ql susan 15=43:10 2/16/19941

Figure 40. Susan Finite State Machine

This is all that is needed to generate code. Upon code generation, APART will recognize
that the messages "WannaGoOut", "ok", and "Sorry", have not been specified. It will con-
struct empty messages for you. It will also add messages needed for its own purposes.
The messages can be seen in Figure 41.

igaaBia^iüRjsjEjaäayk^icöi
lunefl

''^obGetiADate *\

_ %u*a»
£2 &i

s^cT
^ob

SET (]

i **:■;

;::SKr::;:"::fl:?

pl@OK OCTETSTRING [5

tl@50RRV OCTET STRING \f

1 «#WAW<AGOOUr OCTET STRfl«* [} ;

PHANNEUD jiSEQÜENCEliCi
lOSTIDl »ID ^PPL SM :HNL

J^NNELSTORE

Em
SEQUENCE I]

"CHÄNNELiÖä ff

• w.-.-i^.*?

iws&w&ga^^sys ■*

Figure 41. ASN.l Message Format Diagram
62

The generated code compiles and runs. Bob and Susan can be run as two tasks on the
same computer, two computers on the same LAN, or two computers on opposite sides of
the world (if they are both on the Internet).
This finishes a working prototype. The designer can now go back and change the finite
state machines, add new finite state machines, or specify the content of the messages and
recompile. Each prototyping pass fills out more detail and this iteratively transitions the
prototype into the desired protocol.
The point of rapid prototyping is to produce a better product through iterative refinement.
Since APART supports the entire design/test/evaluate cycle of software production for
protocol; it increases the number of passes one can make on their product. APART com-
municates to protocol designers in a natural form (graphical finite state machines). It auto-
mates addressing. It provides simulation and validation tools for debugging purposes. It
generates compilable C code equivalent to the design. A single protocol development
pass can take hours or days with APART, instead of weeks or months. This dramatically
changes the landscape of development as it becomes cheap to include user feedback in the
production of software.

63

7.0 Groupware
Groupware is a generic term for software that electronically integrates the work of two or
more users. It is different from other software applications, in its necessity to unify the
work of users on separate computers. A fair percentage of existing groupware applica-
tions are little more than constrained mail facilities. However, a lot of the promise of
groupware centers around potential applications that require a more complex interaction
between computers.

A groupware application must unify the work performed on separate machines, so there
must be some "rules of unity" that allow or disallow the inclusion of an individual piece of
work into the unified task. Whether acknowledged or not, these rules constitute a proto-
col, in that there are messages passed back and forth between computers and, in the con-
text of available resources, rules define the course of the interaction between the
computers.

The scripting of allowable interaction is a protocol; it is a protocol that is specific to the
groupware application. A groupware spreadsheet may not allow two different users to
edit the same field at the same time; or if it does, it should assert a priority or otherwise
disambiguate the effect upon the data field. The procedural turn taking that must occur
between the computers, and the rules that define who wins in such conflicts constitute a
protocol. If the protocol is trivial enough, developers may not find it valuable to explicitly
acknowledge it as such. However, as groupware applications become more complex, the
associated protocols will become more burdensome to debug. By acknowledging the
interaction as a protocol, developers can focus abstractly on the problem of the interaction
rather than cloud the issue by burying the problem in the details of the implementation.

Groupware developers should heed the lessons of protocol research. The number of possi-
ble interactions between N parties utilizing even a simple protocol can be difficult to antic-
ipate. There are some well accepted metrics for good protocol; for example, one would
likely want their protocol to be free of deadlock. By incorporating metrics, techniques,
and tools from protocol research, groupware developers can minimize their own develop-
ment effort.

7.1 Protocol Independence

This section will document the merit of explicitly separating the group interaction from
the core functionality of a groupware application. Much like user interface design, the
design of a group's allowable interaction is a nearly orthogonal problem to that of design-
ing the functionality of an application. The term "protocol independence" was invented
by the authors in the tradition of "dialog independence" for user interfaces, and "data inde-
pendence" for abstract data types. Like user interface design, group interaction should be
designed iteratively, for maximum user sensitivity. By separating the group interaction
from the rest of the code, one divides a groupware application into two better understood
parts: single-user code, and protocol. Figure 42 provides a block diagram for applications
that are organized for protocol independence.

64

USER

1 + Word Processor GROUP interaction code ■ft

Computer 1

USER

2 + Word Processor ZH GROUP interaction code

Computer 2

O o

i s

Word Processor ZH GROUP interaction code

Computer N

Figure 42. Groupware Example: Collaborative Writing

Methodologies for group interaction that require a heavy emphasis on specification tend to
perform poorly; as no matter how well intentioned or informed, one can not always antici-
pate the needs or preferences of a group of users. As a result, a highly iterative develop-
ment strategy is recommended. Prototypes of group behavior can be tried and refined as
hindrances are discovered. This iterative design methodology is only possible if either,
the entire application can be rapidly prototyped, or the protocol is developed indepen-
dently of the rest of the application.
Protocol independence in a groupware application advocates that a distinction be made
between the design of the group interaction and the design of the rest of the application.
Protocol Independence:

• separates the complexities of an application with multiple users from traditional
single-threaded (i.e. single processor) software.

• allows each portion to be developed and upgraded independently.
• enables the conversion of existing applications to distributed applications; only the

group interaction code need be developed.
• enables the conversion of existing applications to distributed systems applications

in an efficient manner while minimizing the look and feel changes to the end user.
• increases the likelihood of good design and end product, as the group interaction

development can use years of protocol research. For example, one can apply pro-
tocol metrics such as deadlock detection.

65

"•. Protocol Finite ^
Stack '. „ ., ,.

T) 1 1 !/ P^
:: r ■ / ' \ : \ A ^

V y v ^ J

 1 •.

FrameMaker Word Processor

A
P
I

Group
Interaction
Finite State
Machines

Comm
Stack

i

y

Figure 43. Distributed Application Decomposition

Most importantly, Protocol Independence enables one to use protocol design tools such as
APART, in order to get the job done more quickly and cost effectively than with traditional
methods. Figure 43 gives a more detailed look at the application architecture under proto-
col independence. It depicts the APART tool generating the protocol portion of the appli-
cation.
7.1.1 Group Interaction Is Protocol
Protocol is the allowable interaction of two or more software processes, and this is more
difficult to track than uni-processor software. Unless specifically addressed, protocol bugs
are more frequent, and often manifested as catastrophic failure.

Fortunately, protocol has objective evaluation metrics, such as: deadlock and livelock.
Protocol requires a higher level of program correctness than other software development.

To bundle protocol design with other software development is to reject protocol metrics.
Criterion such as deadlock are cast in terms of interactions between processes, the sharing
of resources, etc. While any software development theoretically can be cast in these
terms, the "full search space" of even a trivial program would preclude the use of tech-
niques such as deadlock detection. By lumping the development of software with objec-
tive metrics in with software containing subjective metrics (e.g. Modularity, Top down
design, etc.), the lowest common denominator, subjective metrics, shall be applied to the
whole. On the other hand, if protocol is designed independently of the rest of the group-
ware application, one can utilize the tools and techniques of years of research.

7.1.2 Protocol independence limits the effect of reorganization

Protocol Independence, not only speeds protocol development in groupware; it insulates
the rest of the application from arbitrary protocol decisions. In user interface develop-
ment, the principle of dialog independence insulates the user's whims in the interface,

66

from the rest of the application. In similar fashion, Protocol Independence insulates the
organizational structure of the group from the rest of the application.

The topological organization of a group is application, and perhaps user community, spe-
cific, ff on?were constructing an application that routes paperwork to a series of people
for their "sign-off', perhaps a pipeline would be most appropriate (e.g. Workflow)^ Appli-
cations where group members collaborate while simultaneously editing the same docu-
ment may find^taV topology sufficient (e.g. Client/Server). Still others applications may
find a strict hierarchy more appropriate, for supervisory or propagation efficiency sake
Eventually, as matrix management styles find their way into groupware; adhocracies will
allow management structures to evolve and dissolve as circumstances require.

The group topology should be a facet of the group protocol. If one were to switch to a dif-
ferenTorganiktion, the protocol would have to be changed to reflect the new command
and routing structure. Fortunately, the application specific functionality can remain
u^chXed Tword processor will still be a word processor, but different people will have
the right/responsibility of verifying your new paragraph. By encapsulating the group
faction S» the protocol, the rest of the application is unaffected by any reorganization
of the group command/control structure.

12 APART Produces Groupware
APART is a graphical tool for the design, analysis, simulation, and code generatort for
protocol If groupware adheres to the principle of Protocol Independence, then APART
can generate the group interaction portion of a groupware application.

APART is a tool which allows a groupware protocol developer to graphically define and
manipulate a protocol at a high level of abstraction. From the design, it will create a icfcr-
e^ Cementation of the groupware protocol and validate the protocol in an interactive
environment If a communication problem is detected at this stage, APART can slow
down and snoop the failure condition in simulation mode allowing for several iterations of
Z design process until the developer is satisfied. APART will generate the code for the
groupware application. By speeding the development of good protocol design, APART
encourages iterative group-interaction development.

73 Various Flavors of Groupware
Groupware can take on various group organizations. The following sections will touch on
three: Client/Server, Workflow, and Distributed.

73.1 Client/Server Applications
A Client/Server application is a form of groupware in which there are two classes of group
members that intent There are any number of Clients; each user has a Client running on
their local machine. A Client represents its user in group interactions. However there is
typically only one server per group. The Server maintains group cohesion serializes
gLp interaction, delves out group resources, and possibly records grouf) behavior As
groupware applications often have some sort of shared finite resources, the Client/Server
model is an obvious and popular technique for resolving group conflict.

67

The Collaborative Writing Demonstration application, described in the next section, is an
example that adheres to the Client/Server model.

7.3.2 Workflow
"Workflow" is a paradigm shift from traditional groupware. Instead of concentrating on
the users and how they relate to each other through the sharing of data, Workflow focuses
on data, and the users are merely steps on the journey of that data. Workflow is the auto-
mation of a well defined (previously paper) process in a group of people.

The prototypical example of Workflow is the insurance claims adjustment process. There
is usually a well defined process in an insurance company for handling claims. For
instance, a claim arrives, and it is forwarded to the first available adjuster. If the paper-
work is incomplete, the adjuster calls the person who made the claim for more informa-
tion. If the claim meets certain criteria it is automatically accepted and a check is
dispensed. However, if there is some unresolved question, the claim is forwarded to
someone who is a specialist in that area, and so on. The point of this example is that, if
one were to automate the process of routing the information from person to person via
computer in the insurance company, one would term this, Workflow.

One metaphor of Workflow is the idea of "in-box"es and "out-box"es. Each person who
serves some role in the Workflow process has a set of data items to be processed, an"in-
box", and a place to put them after their work is complete, an "out-box". In APART, these
are implemented as queues. There are input and output queues and they are specifically
designed to store data until it is needed, in the case of an input queue, or until it can be
delivered to its destination. Figure 44 shows a data flow diagram for such a Workflow
application.

Figure 44. Inbox Outbox Example

Another metaphor is the concept of a pool of resources. For instance, there may be a pool
of claims adjusters, any one of which may be able to process a claim. However, it is not
known ahead of time, which adjuster will be available. An adjuster will be assigned from
the pool, to process a claim at the time the claim arrives.

68

■i-ivi i ■■ 11 ■!■ i "">(fi _'" _ ■ MM ■■■■■—m

a a a üi & gi 1Q BJ si £i a n a 11 i<a?Ta

'A Pool of Claims Adjusters

'Adjuster
'Avail

-&:
AloAdjuster VAvallAd^us"r

%ool

fr"1,--T"
n

romAdjusterAqnbmltClalm
^Customer

?>

Figure 45. Adjusters Example

Figure 45 show a data flow diagram for an insurance claims example where, adjusters
check in to the pool to indicate that they are available. They do this by placing a note in
their outbox called, "Avail". When a claim comes in from a customer, it arrives in the
inbox "Claim-In". The address of the customer and the claim are sent to the first adjuster
in the'inbox "AvailAdjuster", by placing them in the outbox, "ToAdjuster." The adjuster
that receives a claim in his inbox "GetClaim", can then process the claim and send it back
to the customer by placing it in his outbox, "ToCustomer". The processed claim is deliv-
ered to the customer's "FromAdjuster" inbox.
Workflow is very naturally expressed in APART's data flow diagrams. It has been shown
that APART allows one to express when and where data will pass from player to player
through an organization. Libraries of finite state machines can be built to implement
workflow constructs such as pools of resources, and timers. In this way, one can rapidly
prototype and generate Workflow applications tailored to the application and organization

at hand
73.3 Distributed Applications
Distributed Applications can be used to describe all of Groupware. However, the term
tends to imply the application may not have humans as members of the group. In other
words, a distributed application may not be constructed for the interaction of humans, but
simply a technique for delving out sub-problems to other computers.

69

One may want to sub-contract out sub-problems to other computers for various reasons.
Some computers may have unique capabilities, such as pipeline processors, high speed
graphics transformation, database access, etc. Others reasons for distributed applications
include speed up through multi-processing, redundancy, or even CPU load balancing.
A non-user based distributed application can have any group architecture. So, APART is a
powerful tool to user and non-user based Groupware.

70

8.0 The Collaborative Writing Demonstration
The Design Specification Document stipulated that an application interface would be
devised and delivered as part of the research. The purpose of this deliverable is to demon-
strate how protocol implemented with APART can provide service to an application.

In this section, the author will retrace the process of creating the Collaborative Writing
application and application interface using APART The Collaborative Writing Demon-
stration is a groupware application constructed from a commercially available single user
word processor. This distributed application will be structured in accordance with the pro-
tocol independence architecture as depicted in Figure 46.

r
i Stack

h-r! 1 1 1 :
I , •

. 1 \ f
•

Protocol Finite
State Machine

/'

FrameMaker Word Processor

Group
Interaction
Finite State
Machines

Figure 46. Distributed Application Decomposition

8.1 Walk-through (with protocol rules version 1)
By walking the reader through the steps of constructing the Collaborative Writing Demon-
stration, one should glean both the level of effort required to upgrade single user software
to groupware, as well as the methodology of development. An integral part of this meth-
odology is the design and construction of the protocol to application interface.

Step 1: Define the Goals
Clearly stated goals dramatically increase the probability of productive development. In
an effort to showcase the ITKM staff development effort, the Collaborative Writing Dem-
onstration had the following goals:

• Upgrade a commercial word processor to Groupware, using the APART tool.
. Minimize the changes to the end user, so that Collaborative Writing is little differ-

ent than single-user writing.
. Allow one to work on a private copy of text, and then allow a user to share it with

the others only when comfortable.

71

Step 2: Design the Organization of the Group

It seemed reasonable to assign all users to equal status in the group. In order to simplify
serialization and resolve conflicts over resources, the team chose to have an autonomous
group moderator. This constituted a Client/Server arrangement, where each user is
assigned a client and the autonomous moderator is the server.

Step 3: Define the Group Interaction

A locking scheme was chosen to coordinate the work of the group members. Much like a
library, one can check out a book, and others can not use it until it is checked back in.
More specifically there is a document server and any number of clients. Figure 47 shows
the distributed application organization with one server task and two client tasks. The
Finite State Machine tasks are represented as filled in rectangles. Each group member has
a client FSM associated with it. Initially all group members have a read-only version of
the document. The local editor that holds a portion of the document is represented as the
rounded comer object. The document is divided into sections typically on chapter bound-
aries. The beginning of each section is identified with a hypertext button. The button is
represented as a small empty rectangle in Figure 47. The actual look&feel of the word
processor can be see in Figure 48. The hypertext button in the read-only document is rep-
resented as a "pencil" icon.

Server FSM

. Document Portions .

Client FSM Client FSM

Group Member Group Member

Figure 47. Client/Server Task Organization

Whenever one wants to edit a chapter, one clicks on the hyper text.button. This sends a
message to the server requesting permission to edit the chapter. If no one else is already
working on that chapter, then the server sends the chapter to that client with full read/write
privileges. There the group member can use the word processor to change the chapter as

72

needed. When the group member feels it is in a form sufficient for others to read. Then he
presses an "ink-pen" hyper text button to publish it. This has the effect to transmit the new
chapter to the server. The server marks it as available for others to edit and then distrib-
utes the entire document (with the new chapter) to all group members in read-only form.
This new version replaces the previous version on the screen. In this fashion, the group
members can work on different parts of a single document individually, and as others pub-
lish they can receive the latest-and greatest, without stepping on each others toes.

Protocol and Dialog Independence in
Groupware

J.ft»»>«H.W»t«*ea*
Corpntionfor Opts SvsteBU IK 1

DcfJ.of CcaefjattT Sdence, Vr^faTock

Ab «tract

Oimm i» «tamae um for »fa»«« met «Uarcnicalb/integrate» tnawarWpre <*
um im M panpM» epplcenon» im due« am?onanrj swrporindwBk « meac
—«ton» »pecaac faniwuliiy. CM or more «or interfaca», end <n« nrnmimirana*
m-teicmj between die work*cedon», known" u protocol ConajrajMamenInterface
(CH) einen» advi»e of 4«»eperation oftnt uerinttrfeee from A««pphcerum > a»
tacnonenty known e» dialog independence,!» « crmcal technique for enaUmgd«e«n-
itroant efoffectwe im inttrfecej. Indeed, U«er Interface Management Syatem» (1»>E)
endetherinterfacebuildertool» relyheavüy npon di«lo(independence In «"""M*™*-
ua. ttitre ere «rang argument» for Protocol tttdep enden«, mdudingrhe u»e ofPrototxi
AnelyHJ Tool». Thi» paper mirror« many of the ergamtnt» for ««log independence a»
trcmaent» fa protocol independence It de«cnbe» « groupwere epphcanon called Annu-
al Plan, now en the drawing board. And it briefly oudine« APART, a protocol enah/K»
coal developed at to* Corporation for OpenSyftema

Figure 48. Look&Feel for Collaborative Writing

Step 4: Define the API
In order to construct this demonstration, it was necessary to confirm that the word proces-
sor had a bi-directional API. This is a communication mechanism between the word pro-
cessor and the group interaction code (i.e. protocol) that would be developed with APART.
The word processor would run on each group member's computer as a Unix task. Simul-
taneously executing on each computer would be the protocol task. The protocol task
would be generated by the protocol design tool APART. However, some means of com-
munication between the word processor and the group interaction is necessary. This con-
stitutes the application interface(API).

73

Communication from the word processor to the Client/Server tasks will be know as group
activation. The user needs to be able to request exclusive rights to edit a portion of the
document. Later, the user needs to be able to publish the portion and release rights.
Communication from the Client task to the word processor will be know as local activa-
tion. The protocol needs to be able to control the word processor in order to open a docu-
ment, close a document, and build a read-only document from a set of separate portions.
Step 5: Select a Product to Upgrade to Groupware
Often this step is earlier in the development process, but since our goal was to demonstrate
the effectiveness of APART; the specific product selected was less important. Frame-
Maker is a word processor on Unix machines. It has extensive text, graphics, page-layout,
and hypertext capabilities. FrameMaker was selected because it happened to be available
at the time, it's hypertext, and programmatic API.

Step 6: Design the Dataflow
Based on earlier decisions, there are any number of users all of equal status. Each user has
a client associated with it; or restating this more correctly, each client is the protocol for a
user in the group. There is only one server, and it is capable of talking to and listening
from any client. The server must also maintain a list of active clients. A button task will
be executed each time someone clicks on a hypertext button. The button task will inform
the client task that the user wants something. This organization is reflected in the dataflow
diagram of Figure 49.

Figure 49. Collaborative Writing Data Flow

FSM Button informs the client of the user's request on output channel "Say", which will
be delivered to the Client's channel "Usr". Clients have channels to and from the Server.
Whenever a client checks into the server, the client's address will be thrown into a list of
active clients (e.g. the "Hopper").

74

Step 7: Design the Finite State Machines
The Client finite state machine diagram is shown in Figure 50. After requesting and
receiving membership the FSM will be in the normal wait state S6. If the user requests to
edit a portion of the document, then from S7 the FSM can either Open the portion or report
that it is not available. If the user is finished with a portion, then S9 passes on the pub-
lished portion to the server. If server indicates that there is a new read-only document,
S10 (the open book icon) handles closing the old document, and opening the new one. In
any case, execution returns to state S6.

Figure 50. Collaborative Writing Client FSM

75

The Server finite state machine diagram is shown in Figure 51. S4 is the normal wait state.
States S6, S7, and S15 add new Clients to the list of Clients, if they are not already on the
list. State S11 handles a request for a portion of the document, and returns a message of
either "Chunk" or "Zilch" to indicate whether the portion is available. When a portion is
returned, S13 will mail a new read-only document to each member on the client list.

fac^iw&cflwigsflSRTff^

Figure 51. Collaborative Writing Server FSM

76

The Button finite state machine is shown in Figure 52. There are two messages the user
can send to the client with the Button FSM, EditChunk or Pub. This FSM scans the com-
mand line for an address and uses it to mail the message to the user's client. The Button
FSM is so trivial, that the author chose to put the C code for command line parsing directly
on the FSM diagram, rather than hiding it in a stubs file.

.__ / TESTSQUIT (#[
^har echo[100], typed[100], namec.lOO];
jnsigned long dest; short len, flag; dest=0; flag=0;
llt_ = AD_CREATE (CHANNELSTORE) ;
DPT_SET(alt_->CID, D_PRESENT);
if (ARGC!=8) flag-1;

if <sscanf(ARGV[3],"%ld",SCalt_->CID.HOSTID))!-l) flag-1;
if (sscanf<ARGV[4],"%ld»,i(alt_->CID.?ID))!=l> flag-1;
if <Sscanf<ARGV[5],"%ld",t(alt_->CID.APPL)>!=l) flag-1;
if <sscanf(ARGV[6],"%ld",S<alt_->CID.FSM))!-l> flag-1;
if (sscanf(ARGV[7],"%ld",S<alt_->CID.CHNL>)!-l> flag-1;
if Cstrcmp(ARGV[l],"EDITCHUNK")) TEST-TESTqEDITCHUNK;
else if (!strcmp(ARGV[l],"PUB")> TEST=TESTqPUB; 1

if (flag==l) { AD_DESTROY(alt_); alt_ = NULL;
system("echo >/dev/console Error - Button params Invalid")
prlntf("%s %s %s %s %s %s %s %s ", ARGV[0], ARGV[1], ARGV

ARGV[3], ARGV[41, ARGV[S], ARGV[6], ARGV[7]) ; }

f)

[2];|

©JSSSiJi S^W^^S^J

Figure 52. Hyper-text Button FSM

Step 8: Generate Code, Compile, and Debug the Skeletal Protocol.
The design should generate text source code without additional information. Each mes-
sage found in the FSM diagrams will be placed in the ASN.l diagram (if it is not already
there) Each FSM diagram wUl generate a file of "stub" procedures that create a place
holder for API calls, to be filled in later. The most frequent design bugs caught at this
stage include: miss-typed channel names (as indicated on the data flow diagram), acciden-
tally disconnecting one end of a transition, forgetting to indicate start or terminate states,

etc.
Type "make debug" in a command window to compile it with debugging messages
included. Execute the code, it should exchange messages at this point, but not interact with
the word processor, nor pass data in the messages.

Step 9: Complete the Messages
Some messages, such as requests or acknowledgments, need no content. Others need to
pass simple text strings or integers. Others pass whole files as large Octet Strings.

77

Step 10: Program the Constructors

By shift-right mouse clicking on an outgoing message, one can edit the constructor for that
message as seen in Figure 53. This is C code for filling in the content of the message
about to be mailed, "msg" is the pointer to the message to be filled in. Lines 1 and 2 con-
struct a character string of a filename. Line 3 allocates space in the outgoing message for
a character string field called NAME. Line 4 copies the character string from the last mes-
sage arrived field called NAME into the outgoing messages field also called NAME. Line
5 allocates space for a file in the outgoing message field called FILE1. bufffromfile on
Line 5 is a procedure that copies the contents of a file into the space.

chai fiUn*m»(S00).
«pcintf(filanaaa, **»/*»". dir. lug->HM(E);
&RR»T_ALLOC(a*g->KUa. »trlon(l»ag->NMO:)»l);
»trcpy(ug->KUK. l»jg->KWQ:),
ARRAT ALLOC (»ag-tflLIl. buff froafile (HULL. filenajuO);
bufffrosfil«(ug->rn£l. filename);

Figure 53. Constructor: Put Document in Message

Step 11: Generate Code, Compile, and Debug the Protocol.

The design should generate code for the protocol with complete messages. The most com-
mon design bug found at this stage is a message field miss-spelling, or type miss-match
between the ASN.l diagram and the constructors.

Step 12: Connect the Protocol to the Application (application interface)

Local activation is the set of procedures that implement the ability of the group to wake up
the local word processor. Local activation was implemented by modifying an API for
FrameMaker called "docclient". Essentially docclient is a back-door for programmatic
synthesis of key clicks and dialog interaction. Local activation for the collaborative writ-
ing demonstration consisted of code to implement three functions.

• "opendoc" opens a file in framemaker in either normal or read-only document, and
with or without a hypertext publish button.

• "closedoc" saves an opened document and dismisses the window.
• "builddoc" appends several files to construct a single document with hypertext edit

buttons for each file portion.

Figure 54 shows a portion of the C code that implements "opendoc". It consists primarily
of stuffing predefined character strings down an i/o stream to tell FrameMaker what to do.

Group activation is the set of procedures that implement the ability of a user on the local
word processor to wake up the group. Group activation was implemented as hyper-text
buttons. In FrameMaker, one can specify a Unix command to be issued whenever a
hypertext button is clicked. By constructing a Button FSM that sends a message to the cli-
ent when it is executed, the hyper-text button can execute the Button FSM, and thus notify
the client FSM of the user's desire. Group activation for the collaborative writing demon-
stration consisted of the following two functions.

78

The Button finite state machine is shown in Figure 52. There are two messages the user
can send to the client with the Button FSM, EditChunk or Pub. This FSM scans the com-
mand line for an address and uses it to mail the message to the user's client. The Button
FSM is so trivial, that the author chose to put the C code for command line parsing directly
on the FSM diagram, rather than hiding it in a stubs file.

□ aaj^QOlBORJSJEJSiaaGl Button\SM^\~^211W*

TESTSQUIT

^^^ TESTSPub/SaygPub
lESTgEditChunk/SaySEditChunk 1

/ TEST8QUIT (#[
-har echo[100], typed[100], named[100];
unsigned long dest; short len, flag; dest=0; flag=0;
llt_ - AD_CREATE (CHANNELSTORE) ;
DPT_SET(alt_->CID, D_PRESENT);
If <ARGC!-8) flag-1;

elif <Sscanf<ARGV[3],»%ld»,«(alt_->CID.HOSTID))!=l) flag-1;
if (sscanf(ARGV[4],"%ld",s(alt_->CID.PID))!=l> flag-1;
if <sscanf(ARGV(51,"%ld",<<alt_->CID.APPL))!=l) flag-1;
if (sscanf(ARGV[6],-%ld",S(alt_->CID.FSM))!-l) flag-1;
if (sscanf(ARGV[7],"%ld-,«(alt_->CID.CHNL))!-l) flag-1;
if (<strcinp<ARGV[l], »EDITCHUNK»)) TEST-TESTqEDITCHONK;
else if (!strcmp(ARGV[l],"PUB»)> TEST=TESTqPUB; }

if <flag==l) { AD_DESTROY< alt_); alt_ = NULL;
svstemCecho >/dev/console Error - Button params invalid")
printf(-%s %s %s *s %s %s %s %s -. ARGV[0], ABG7[1], ARGV[2];

ARGV[3], ARGV[41, ARGV[5], ARGV[6], ARGV[7]); J

#)

äj^s^B88awW»»iwM^^

Figure 52. Hyper-text Button FSM

Step 8: Generate Code, Compile, and Debug the Skeletal Protocol.
The design should generate text source code without additional information. Each mes-
sage found in the FSM diagrams will be placed in the ASN.l diagram (if it is not already
there) Each FSM diagram will generate a file of "stub" procedures that create a place
holder for API calls, to be filled in later. The most frequent design bugs caught at this
stage include: miss-typed channel names (as indicated on the data flow diagram), acciden-
tally disconnecting one end of a transition, forgetting to indicate start or terminate states,

etc.
Type "make debug" in a command window to compile it with debugging messages
included. Execute the code, it should exchange messages at this point, but not interact with
the word processor, nor pass data in the messages.

Step 9: Complete the Messages
Some messages, such as requests or acknowledgments, need no content. Others need to
pass simple text strings or integers. Others pass whole files as large Octet Strings.

77

Step 10: Program the Constructors

By shift-right mouse clicking on an outgoing message, one can edit the constructor for that
message as seen in Figure 53. This is C code for filling in the content of the message
about to be mailed, "msg" is the pointer to the message to be filled in. Lines 1 and 2 con-
struct a character string of a filename. Line 3 allocates space in the outgoing message for
a character string field called NAME. Line 4 copies the character string from the last mes-
sage arrived field called NAME into the outgoing messages field also called NAME. Line
5 allocates space for a file in the outgoing message field called FILE1. bufffromfile on
Line 5 is a procedure that copies the contents of a file into the space.

ehai filanau (500);
•printf(filouu. •*»/*»". dir. bug-»DUE);
MWiT_iLU)C(m»g->KXXr. strlen(l»sg->10M:)«l);
»trcpy(ug-XUE, lasg-»i%XE);
MffiiT_iU.OC(m*g->riLEl. bufffioafila(NQU.. filanue)).
bufftromfila(ug->riLZl. filenua);

Figure 53. Constructor: Put Document in Message

Step 11: Generate Code, Compile, and Debug the Protocol.

The design should generate code for the protocol with complete messages. The most com-
mon design bug found at this stage is a message field miss-spelling, or type miss-match
between the ASN.l diagram and the constructors.

Step 12: Connect the Protocol to the Application (application interface)

Local activation is the set of procedures that implement the ability of the group to wake up
the local word processor. Local activation was implemented by modifying an API for
FrameMaker called "docclient". Essentially docclient is a back-door for programmatic
synthesis of key clicks and dialog interaction. Local activation for the collaborative writ-
ing demonstration consisted of code to implement three functions.

• "opendoc" opens a file in framemaker in either normal or read-only document, and
with or without a hypertext publish button.

• "closedoc" saves an opened document and dismisses the window.

• "builddoc" appends several files to construct a single document with hypertext edit.
buttons for each file portion.

Figure 54 shows a portion of the C code that implements "opendoc". It consists primarily
of stuffing predefined character strings down an i/o stream to tell FrameMaker what to do.

Group activation is the set of procedures that implement the ability of a user on the local
word processor to wake up the group. Group activation was implemented as hyper-text
buttons. In FrameMaker, one can specify a Unix command to be issued whenever a
hypertext button is clicked. By constructing a Button FSM that sends a message to the cli-
ent when it is executed, the hyper-text button can execute the Button FSM, and thus notify
the client FSM of the user's desire. Group activation for the collaborative writing demon-
stration consisted of the following two functions.

78

N ■ - - •*« •■•, •„; ' " I 1 .,.:-. ,./■■,.... f , „A!

fprlntf<plp». '0 I«^UVn-. P*th. bufftll >:
If <tl«pl«=0> <

,348222888831811311£888308313O2«348308372.->:
39 88888831« 0\«">;
• 143 100 32 0\n'):
. 143 100 244 330 627 222 8 8 8 8 8 8 8 102 102 1« 102 102 102 102 •):
102 102 102 102 102 102 102 102 102 102 102 102 102 102 102 ">:

fprintf<plp»,
fprlntf<pi»,
fprlntf<plp»,
fprlntMplp«,
fprlntf<plp».
fprlntf<plpe,
fprlntf<plpe,
fprtntf<plp»,
fprintf<plp»,
for <e=a«J: «el

102 102 102 102 102 102 102 102 102 :

f^Ui 100 103 S22 222 8 8 100 102 102 102 102 102 102 102 102 8 •>:
SdS5737361G7 6520737373 74 656d »">:

\0'; e~> fprlntfCplp», * Zx". <lnt»c >:

Figure 54. Interface Function "opendoc" (Side-effect)
• "editchunk" would indicate the user wants to edit a specific portion of the docu-

ment.
• "publishchunk" would indicate that the user is finished with a portion of the docu-

ment and no longer needs it.
Figure 55 shows a hypertext button and its definition. When one clicks on the hypertext
button, the Unix command "Button EDITCHUNK gl 98 69 188 1 0" will be issued. "But-
ton" is the small FSM created just for group activation; all it does is construct a message
out of the items on the command line and sends it to the Client FSM. EDITCHUNK indi-
cates that the user wants to edit a portion of the document, "gl" is the name of the docu-
ment portion. "98 69 188 1 0" is the address of the client. When the Client issued the
"opendoc" for this file, it substituted its own address into the hypertext buttons to insure
that it receives the user's requests.

iiiiiii

Figure 55. Hypertext Button Definition

Now that the bi-directional API is implemented, as a set of functions, source code for any
side-effect functions, in stub files, can be filled out.

79

Step 13: Generate Code, Compile, and Debug the Groupware Application

This completes the prototype of the groupware application.

Step 14: Community Usability Testing

The end users should be allowed to try out the application. Undoubtedly, they will have
suggestions for improvement. Based on feedback and cost/benefit analysis, one may go
back to a previous Step with new insights. Fortunately APART makes the modification of
designs inexpensive, to allow multiple iterations to hone in on an acceptable groupware
application.

Suggestions received during the construction of the collaborative writing demonstration
included the following items:

• A more direct API than docclient. By obtaining information directly from the
developers of FrameMaker, Consider reducing the "simulated mouse clicks" and
screen flashes.

• A group archive capability. The Server FSM could be augmented to save the doc-
ument after each publication to prevent both catastrophic failure, and loss of infor-
mation through deletion.

• Edit rights time-out. Currently, once one checks out the rights to edit a portion, he
has exclusive rights until the changes are published. Time-out should be easy to
implemented at the Server. However, one must then resolve the conflict between
the two sets of changes to a portion (i.e. those that result from a timed-out session,
and those from the member who obtained rights to change it after the time out).

• Hierarchical allocation of editing rights. One may want to hand out responsibility
for major chapters to designated individuals, who then delve out sub-chapters to
their group members, etc. recursively. This would suggest that the group be orga-
nized as a set of groups, instead of a static Client/Server model. This would also
require that a document be able to be infinitely divisible into sub-portions.

• Access protection. Presumably different people may have different authority for
group membership, read, or editing rights. This would probably be implemented
as some sort of database accessible by the Server FSM.

8.2 Alternate Protocol Rules (version 2)

Another protocol was developed in parallel to the "locking" mechanism described in this
chapter. It was also a Client/Server model, but it allowed any number of group members
to check out and edit the same document portion simultaneously. It resolved the conflicts
with a version control technique.

Each document portion has an associated version number that was sent to the clients along
with the document chunk. When a portion was published it would be either appended to
the existing portion held by the Server or replaced. If the portion to be published had a
version number greater then or equal to the version held by the Server then it would be
replaced. Following the insertion or replacement the Server would increment the version
number.

80

In this way the document would include all comments, and allow one to check them out
and merge them together over time. This effort used the same API as the locking protocol;
only the protocol design differed. This illustrates the power of protocol independence.
Once the protocol designer understood and implemented the API, it was possible to design
and redesign the protocol independently of the application.
It was demonstrated that APART allows one to take an off-the-shelf, single-user, product
and create an integrated multi-user product out of it. The modification to the product s
user interface was minimal, just two hypertext buttons. In essence utilized a back door,
invisible to the end user, in order to maintain group coordination. This potential of this
technology for enterprise integration is vast; as it allows the coordination of legacy sys-
tems into a new cooperative whole.

81

9.0 Usability Testing
To accomplish the usability testing task, a separate document was produced titled "The
APART Protocol Development Environment Test Plan." The goal of the test plan was to
determine the usability of the APART Protocol Development Environment Tool by the
average, rather then the expert user. The emphasis was on the core features and basic
building blocks in the development of a simple application.

The focus is on how quickly and easily a new, but qualified, user is able to learn to use the
APART tool and produce a simple application following specific instructions. Success
was achieved if the tester could become familiar enough with the tool to independently
enhance and modify the application. Testing consisted of four steps:

1. Automated introduction to the tool and the answering any questions the tester may
have at the start.

2. Copying exercise to see if the tester could master the basics of the tool interface.

3. Simple enhancement to see if tester could deal with diagram edit functions of tool
and simple understanding of diagram information.

4. More difficult enhancement of protocol to see of tester had a good understanding
of protocol being represented by tool diagrams.

An attempt was made to keep the testing environment constant for all testers. To achieve
this goal a playback script was constructed for the tool which automated the demonstrated
of the construction of a two party protocol. The tester was expected to repeat the same or
similar sequence of activities in constructing the demonstration protocol. This phase of
testing accomplished two things. The team was able to observe the level of ease or diffi-
culty in using the basic interface functions of keyboard" and mouse actions along with
graphical feedback. Both observations and any questions that the tester asked were
recorded. This test activity also provided training in the basic use of APART. The team
was trying to determine at a coarse level just how much training was necessary for a new
user to get started.

9.1 Testing Results Summary

The testers were provided the test plan ahead of time and requested to read through it. The
playback demonstration took approximately ten minutes with about five more minutes to
answer questions. With this fairly minimal amount of training all testers were able to use
the tool and build the demonstration protocol. The team was quite pleased with this out-
come. The fact that first time users could successfully operate the tool and comprehend
the graphical information was a very positive result. I didn't expect the testers to be able
to complete the second round of protocol modifications. The fact that they did was a
pleasant surprise. I believe it indicates that the APART tool is on the right track.

A fair amount of effort went into the test plan. The test plan contained a detailed script
with graphic examples. It acted as a training aid. Something not contemplated early on. I
suspect that the quality of the test plan played a pan in the success of the testing.

82

9.2 Testing observations
A few interface nuances were observed or elicited questions which pointed to things that
could be cleaned up. The following is a list of features that were identified as things that
could be either cleaned up in the tool code or clarified in documentation:

. In data flow diagrams, it is easy to accidently click on channel connectors which
cause a duplicate channel to be added to the diagram. Once the user is aware that
this can happen it is fairly easy to avoided. It is possible to change the mouse-key
assignment to make this less likely.

• Some functions have a standard dialog box which requires the user to click on
'apply' or 'ok' buttons. The difference between these buttons needs to be
explained. Some form of automated help could avoid reference to paper documen-

tation.
• The hot spot for the cursor is not always obvious. Once the user is aware of what

is the hot spot this problem goes away, but is could be improved by a more overt
hot spot graphic.

• It is possible to make a stack object with zero size if the user accidently clicks a
couple of times while in make-stack mode. Its rare that a user would do such a
thing, but it could be avoided by having the tool automatically discard stack
objects at creation time with very small size.

• Each diagram has many different text objects which could be the focal point for

keyboard input. When in input mode the cursor changes shape to a small vertical
line Its perhaps to small and sometimes hard to find in complex diagrams. Either
a larger cursor for edit mode or some additional feedback graphic would be useful
to improve status feedback.

• When drawing transition arrows in FSM diagrams a new user can get confused as
to which end point, source or destination, the next click will produce. This can be
cleared up by enhancing the graphical feedback to signal a source or destination.

• In order to enter edit mode of empty pre-conditions, the user needs to know that
the hot spot is just to the right and down from the transition anchor point. Once the
user knows were to point this is no longer a problem. It can be improved by sup-
porting clicking on the anchor point itself to enter edit mode for preconditions.

. The preconditions and side-effects have a simple syntax that is explained in paper
documentation. Some on line help could eliminate the need for paper documenta-

tion.
. The parsing of preconditions and side-effects do not recover well from syntax

errors. The syntax is so simple this tends not to be a problem for experienced
users, but this could be improved for first time users.

• In FSM diagrams to call up a constructor window the text cursor must be pointing
somewhere within the text string of the output message name. Putting it at the end
of the string does not work. Once the user is aware of this fact the problem goes

83

away, but the hyper-text button behavior could be improved to work on the end of
string as well.
In message format diagrams, objects can be organized horizontally or vertically.
This is for visual convenience only and has no semantic meaning. This is
explained in documentation. On-line help could benefit first time users.

Its not intuitively obvious that the user only has to enter message format names for
the input side and the tool will match up the outgoing messages by the same mes-
sage name. This is explained in the documentation, but could also be stated in on-
line help.
Depending on the users background, some training on how to read the diagrams is
necessary. This is simply a statement of fact. Nothing needs to be done.

Some errors are placed in dialog boxes which are obvious. Some errors show up in
the command window where the tool was started. This is covered in documenta-
tion, but could be pointed out in on-line help.
Pop-up menus in flow diagrams are created in real time and are slower then other
menus. This could be optimized for performance.
The Meta key is not labeled on the keyboard. This could be added to the on-line
help.
Flow-diagram pop-down menus can be dragged after opening. The dragging
behavior should be removed.
The current version of the Tool uses "C" code as the development language for the
side-effects and glue code. As a result all "C" restrictions such as reserved words
are limitations inherited in the diagrams. No action to remove this fact is planned.

Two reserved words are used in the language: 'lmsg' for last message received and
'msg' for current message under construction. This could be pointed out in on-line
help.

In the flow diagrams, tool functions are selected by clicking on what appears to be
text objects. It would be a little more obvious for first time users to make, them
look more like buttons.
In format diagrams, horizontal is the default. Some users may want vertical as
default. This could be made a configuration option.
In editing format diagrams, when a item is added for the first time the parent
object's type is automatically changed form primitive to constructed. The reverse
is not true. This could be added for improved convenience.

Octet-String is a common type and the default. For convenience is should be
added to the options menu.
It would be a little cleaner to remove the 'OK' button from the dialog box that
reminds the user to click on the stack to be saved.

Flow-diagrams and format diagrams are in the same window. The user needs to
change mode when going from one diagram to the other for editing. This can be

84

made a little more convent if the triangle used to enter format mode acted as a tog-
gle with corresponding feedback. The cursor does change as feedback to which
mode is active, but additional feedback could be helpful.

93 Possible Enhancements
The Tool currently supports modularity by dividing a protocol stack into finite-state-
machines. In the current version, all states in a single fsm diagram are at the same viewing
level This was based on the observation that most protocol FSMs have 30 or fewer states
which could reasonably be viewed all at once. To support FSMs with very large state
space some form of graphic macro capability could be employed. This would allow a
group of states and transitions to be packages and graphically shrunk to a single icon. This
is similar to the concept that was used in shrinking objects in the message format dia-

grams.

85

Appendix: Protocol Decomposition

1 Protocol Decomposition

Object oriented design typically includes the definition of a set of ob-
jects which correspond to the real world of the problem domain. In our
case the real world is data communication protocol and how people
have dealt with protocol through open system standards. A worthwhile
exercise was to enumerated the objects in the real world domain, and to
identify corresponding objects within APART. To help discover the
working set of objects, the team performed two exercises. The first was
to review a protocol specification and list all the generic things which
are described in the specification. T he resulting list can be found in
subsection 2. In addition an example state transition was scrutinized
and all of its steps recorded. This recorded list can be found subsection
3. From these two lists, an initial set of objects or protocol building
blocks have been formulated.

From the exercises and past experience, the initial building block de-
sign is based on the assumption that standard protocol of the upper lay-
ers can be decomposed into the following items:

1. Finite State machine

2. Data flow diagram

3. Message format diagrams

4. Set of protocol actions which can be constructed from a library of
function parts.

5. State variables and predicates

6. Events, Timers, and Queues

7. A high level notation which can handle the large majority of
specifying the variables, predicates, and actions.

One of our research hypotheses is that protocol can be decomposed into
the above logical parts and that the parts will be sufficiently generic to
be reused in the specification of multiple protocols. For a tool to be
able to construct an implementation, additional generic parts will be
needed. Each generic part will be handled through some aspect of the
tool's graphic interface.

86

2 Components of a Protocol
This subsection is the result of an exercise to discover what is needed for protocol building
block objects within APART.
Protocol in open systems specifications are decomposed into several defined parts as fol-

lows:
1. Protocol State Machine which enforces the transition rules.
2 Protocol States which define the legal actions of the protocol per state. Actions

* include parsing incoming PDUs. Constructing outgoing PDUs. Managing protocol
state variables. Evaluating predicates. Note- The reception of a serviceprimitive
and the generation of dependent actions are considered to be an indivisible action
as well as the reception of a PDU and the generation of dependent actions. The
indivisible behavior can be/should be an implicit characteristic of protocol gener-
ated by the tool. This suggests the qualitative step granularity of the simulation.

3. Predicates which define state variable relationships. The state machine enforces
the rules by evaluating the predicates.

4 Incoming events which are service primitives and timer events. Service primitives
' convey commands and messages, PDUs. Service primitives may have embedded

PDUs protocol data units (i.e. ASN.l coded messages). Service primitives may
also convey additional parameters for entities below or beyond the immediate
neighbor. Timer events only have an abstract format in the standard. It is desirable
to normalize timer events so they can be treated just like other input events. This
suggests that timers be made manifest as input queue entries. The place in the
queue defines its time relationship to message arrival.

5. Outgoing events. Events are usually organized with reference to the originator
(protocol service user or provider)

6 Grammar - Structure and encoding of APDUs, application protocol data units.
The grammar defines all legal combinations of message format. States define when
each can be sent or received.

7 A queueing mechanism is implied by the fact that the FSM must be able to hold at
' least one message which can be parsed and another which can be constructed

How control of messages in the queue is also implied along with queue length.
The tool should have a flow control buüding block even though the standard does
not specify one.

8 FSMs communicate with each other through side effects of constructing messages
and conveying the messages by way of a service primitive. Service primitives are
abstract Part of the implementation of service primitives can be queueing mecha-
nisms T his is implementation dependant. Note- the tool may define such imple-
mentation dependant characteristics as being fundamental to the tool design and to
all protocol generated by the tool.

The above list is a good starting point upon which to formulate a set of protocol building
blocks. It is not sufficient to implement a protocol. The tool will need additional building

87

blocks such as queue widgets, message parsing functions, field comparison operators, for-
mat handlers relative to a grammar, and ASN.l encode/decode, etc.

3 ACPM State Transition Walk-through

The association control protocol machine has been select as an example to explore in
detail protocol behavior. This exercise will help in discovering what is needed for proto-
col building block objects within APART. The example will cover the transition from idle
(0) to Waiting AARE(l). The actions involved in going through these states are represen-
tative of what the tool needs to deal with in encoding, representing, and simulating state
transitions. Either side of the communication could initiate the association. This example
will cover the case in which the local user is the initiator:

1. The local user builds an A-ASSOCIATE request primitive and optionally, the Pro-
tocol Version and implementation information.

2. The local user somehow causes an instantiation of the Association control Protocol
Machine, ACPM. In this protocol the instantiation could be bundled with the first
primitive/message queuing, function. The tool somehow has to know which mod-
ule/object to instantiate. Two mechanisms come to mind. Assuming the tool has a
static description of FSM connectability it could determine which FSM to instanti-
ate. A second approach would be for the user to explicitly identify which module
and which instantiation. Such overt connection is necessary in some protocols
which deal with session restart or multiplexing among several directly connected
peers.

3. The ACPM tests the truth of predicated pl.pl true is defined to be the state of the
system in which the ACPM can support the requested connection. The tool needs
the capability to associate a collection of logic, possibly arbitrary, to a predicate
identifier. It may be necessary to provide a limited set of such predicates for tool
user level use.

4. The ACPM checks the type of request primitive against the valid set which it
should accept given the current state. If it is an invalid primitive some indication
should be posted by the tool. Such action is not defined in the standard.

5. The ACPM constructs an AARQ APDU from values in the primitive. Twelve
fields of information are defined in the AARQ. These fields need to be encoded in
ASN.l notation. This would have probably been done by the user already. It
depends on the chosen format for the primitive which is not standardized. Some of
the implied functions are the ability to allocated data space to hold the new APDU,
the ability to manipulate ASN.l field values (such as conversion from encoded to
numeric or string form), the ability to build ASN.l structures such as sets and
sequences, the ability to check an incoming PDU for correct syntax relative to a
grammar.

6. If the ACPM were receiving the AARQ APDU is would perform specific syntax
checks. A given protocol is more or less liberal in such checks. The point is that

88

the tool must have the flexibility to modify the severity of checking. In particular
ACPM defines rules of extensibility which state: undefined tagged fields or
unknown bit names should be ignored while undefined APDU or fields constitute a
protocol violation. For ACPM this means that extra undefined tagged fields or bit
fields can be ignored, but required items must be present. In addition to syntax
checks, field values may need to be compared to ACPM internal variables. The
protocol version field is such an item. The ACPM must know which versions it
will support. Upon receipt of an AARQ it must find/parse the version field. The
field is encoded as a bit string. The string is decoded to some internal form which
can be numerically compared against the acceptable values

7. It then encapsulates the APDU as the user data field in a P-CONNECT request
primitive.

8. It packages for pass through additional parameters for presentation and session.
9. It sends the primitive down to the presentation service. In order to take care of the

general case this has to be a queueing mechanism
10. The ACPM changes it state from idle(0) to waiting-AARE (1).

The ACPM sets local state variables. Abstract state variables are sometimes called predi-
cates. One ACSE predicate, p2, if true means that the ACPM originated the association.
In other protocols such variables may represent expiration timers.

89

